Catalog Number 26-2204

An Overview of the TRS-80 -
Model I/IIl Compiler Basic Manual

The four sections in this manual contain the information you
need to use Radio Shack’s compPILER BASIC. We suggest that
you begin by running through the steps in the first chapter of
Section 1, “Operating Compiler BASIC”

The four sections are:

1/Operating Compiler BASIC

Takes you through the steps of operating Compiler Basic from.
starting up the system to typing, debugging, compiling,
running, and saving programs. Includes alphabetical entries
on each BASIC command.

2/Programming in RSBASIC

Shows you how to write programs using the RSBASIC
programming language. Includes alphabetical entries on each
BASIC keyword.

Explains how to use BEDIT to edit your BASIC source programs.

4/Programmer’s Information Section

Gives background information on the Compiler BASIC
development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

This manual complements the information in your Model I/III
Operations and TRsSDos manuals. If you need more
information on your Model /Il computer system, we refer
you to these manuals.

COPYRIGHT NOTICES

TRS-80 MODEL I/1II COMPILER BASIC

© ® 1981 by Ryan-McFarland Corporation

Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL I/III DISK OPERATING SYSTEM (TRSDOS)
© ® 1981 by Tandy Corporation. All rights reserved.

TRS-80 COMPILER BASIC MANUAL

© 1981 by Tandy Corporation. All rights reserved.

Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein.

IMPORTANT NOTE FOR
MODEL /11l COMPILER BASIC USERS
(Catalog Number 26-2204)

It is important to note that when using Compiler BASIC with a Model | or a
Model 111, the minimum system requirements are:

@ Two Disk Drives

® A 48K system.

When starting up the Model | system, the Run-Time Diskette (the Compiler
BASIC system diskette) must be in Drive @. The Program Diskette must be in

Drive 1. When using Model |11, the Program Diskette must be in Drive 0.

Also note that Model | will not prompt you for the date-and time as Model
HI will.

Thank-You!

die fhaelk

EA DIVISION OF TANDY CORPORATION

8759129-781

How Compiler BASIC Works

The BAsIC programming language must translate all your
BASIC instructions to an object code the computer
understands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model I/Ill is an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
in two stages. First, it compiles the entire program to an
intermediate object code. Then, when running the program,
it translates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

® The program will take up much less space in memory and
on diskette.

@ No one using your program will be able to read your
“source” BASIC instructions.

By your purchase of the software product described in this
book, you have obtained a license to duplicate TRSDOS and
Model I/III BASIC only as necessary for personal use on your
Model I/III Micro-Computer.

If you intend to sell BasIC applications programs you have
written for the TrRs-80 Model I/I1, you must follow the
procedure below to avoid violation of this license and of the
copyright laws.

The complete Radio Shack Basic Development System
(26-2204) includes the TRSDOS™ operating system, the
RsBAsIC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RSBASIC produces an intermediaie code which can only be
executed by the runtime system RUNBASIC. Therefore, your
compiled program will require that the user have TrRsDos and
RUNBASIC from Radio Shack.

Since you may not duplicate TRSDOS Or RUNBASIC for resale,
you have two options for selling a copy of your own program:

A. Purchase a RUNBASIC/TRSDOS runtime system diskette
(Catalog Number 26-2208 for Model I, Catalog Number
26-2209 for Model III) from Radio Shack. Copy your compiled
program onto this diskette, and sell this diskette to your
customer. The copyright notices affixed to that diskette must
not be removed or hidden from view. For each copy of your
program you sell in this manner, you must purchase the
RUNBASIC disketie and copy your program onto it.

B. Sell your compiled program without TRSDOS and
without the BAsIC runtime. Instruct your customer to purchase
a RUNBASIC/TRSDOS runtime from Radio Shack.

The Model /Il BAsIC Interpreter programs are not meant
to be run under Compiler Basic. Radio Shack does not
recommend converting BASIC Interpreter programs.

Important Note to
Model lll Users

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making

any modifications to your existing software packages (applications, lan-

guages, or system utilities):

» Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

» Before converting a Radio Shack supplied Model | software package to a
Model Ill format, check to see if Radio Shack provides a Model Il version
of the package. If so, you should obtain a copy of that version.

- If you're using several different software packages, press the RESET but-
ton whenever you change software.

Thank-You!

Radie fhaek

& A Division of Tandy Corporation

8759106

0k k %k k k k *x kx % % k k * * %k k% %

ALL USERS MODELS I/III
IMPORTANT NOTICE PLEASE READ FIRST

* % %k ¥ % Ok
% % ¥ ¥ ¥ %

¥ ¥ % % % % & * kx * X * * *x x * * %

Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES TO READ

NUMBER

26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7
MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

¥ % % % % % %k k %k k &k & K * % k %

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

¥ % ¥ % * *
¥ % % F ¥ %

% k% % k% k k% k k %k %k % %k k * * k %

UPGRADE UTILITY ON TRSDOS 2.3B

e L I T S S N L I S T S I T T T T e e e e e e s e e e e e e e s e e e mmEmsm

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details. TRSDOS 2.3B is
specially designed for use only with the below listed
packages: 1) 26-2013 SERIES I EDITOR/ASSEMBLER
2) 26-2204 BASIC Compiler, 26-2208 BASIC Runtime
3) 26-2203 COBOL Compiler, 26-2206 COBOL Runtime

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may nhot run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.

NEW: TRSDOS 2.3B.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSD0OS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

JPGRADE: A program contained on the TRSDOS 2.3B
diskette.

% k k% k k k % %k Kk k k %k k k Kk % %

MODEL III USERS
IMPORTANT NOTICE PLEASE READ FIRST

% % ¥ % ¥ %
¥ % ¥ Ok % ¥

% k % % k %k k k k Kk % k Xk k k k %k

XFERSYS UTILITY ON TRSDOS 1.3

The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "Not a SYSTEM Disk" will be
displayed.

XFERSYS: A program contained on the TRSDOS 1.3
diskette.

* % ok 0k %k % R & &k % k & k %k % % %k & k% %k %k

OWNERS OF THE MODEL I, SERIES-I EDITOR
ASSEMBLER, BASIC Compiler, BASIC Runtime
COBOL Compiler,., COBOL Runtime

ElE -
% % ¥ % % F

o0k kK k2 R 0k & & 0k % R % ok ok % % ¥ % % %

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1.

1

Variable length records have been corrected, in all
aspects.

In most cases, your computer will not "hang up” when you
attempt use of a device which is not connected and
powered up.

The DEVICE command has been deleted.

ds

0]

The following commands have beesn add

CLS
This command clears the displayv and puts it in the 64-
character mode.

= bb,CHG = cc)
ge to a program file.

el

PATCH 'filespec' (ADD = aaaa,FIND
This command lets you make a chan
You need to specify:

‘aaaa' -~ a four byte hexadecimal address specifying
the memory location of the data you want to
change

*bb' ~ the contents of the byvte vou want to find
and change. You can specify the contents of
more than one hyte.

‘cc' -~ the new contents to replace 'bb’

For example:

PATCH DUMMY/CMD (ADD=4567 ,FIND=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B0OO,.

If this command gives vou a STRING NOT FOUND error
message, this means that either 'bb’' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your f£file one byte at

a time. For example:

PATCH DUMMY/CMD (ADD=4568 ,FIND=33 ,CHG=3B)

replaces the contents of the zecond byte in the above
example.

- 3 of 7

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the
"source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape—-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:

COPY FILEl:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #Rec #Grn #$Ext EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

%% 171 Free Granules #*%*%

——————— o D D i D D D s s D I D S D W ety > A D S D et) A WD e D N D D e S k) D e o -

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *
(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:
0 - total access
1 - kill the file and everything listed
below
2 - rename the file and everything listed
below
- this designation is not used
- write and everything listed below
read and everything listed below
- execute only
- no access

~NoyUi bW
I

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file. ‘

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
utility then proceed as indicated below.
""""" Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. 1f you are attempting
to convert a diskette which has already been converted, the

screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILEZ2 the records
indicated remain the same since EOF=(.

BEFORE UPGRADE AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2.3B
FILEl EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1/S8YS SYS2/8YS
SYS3/SYS SYS4/SYS SYS5/SYS
SYS6/SYS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

|
|
|
i
|
|
]
|
|
|
|
]
|
§
i
|
|
|
i
|
i
I
|
i
]
|
i
|
|
|
!
i
|
i
i
i
i
|
]
|
i
|
|
i
1l

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine” under the TRSDOS 2.3 BASIC
interpreter,follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the scource program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09"',TRA=X'7D00")

Reference Section 4 of your manual and note that X'7000°

is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

875-9119

on ‘1

Operating
c oMm p i I er CAT. NO.
B A c ; 26-2204

General Information
Compiler Use, Start-Up,
Commands

™

soFTware |

[radio mack bl =

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

khkkkhkkhhhkkkhkhkkhhkhkkhhhkkhkhkhkkkhhkkkhhkkhkk

Chapter 1

*
*
*
* USING COMPILER BASIC
*
*

*
*
*
*
*
*

khkkkkhkkhkkkhkkhkhkkkhkhhkhkkhkhkhkhhkhkkhkkkhkkkkkkkhkk

Radio fhaek

D)

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, oOr

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other people to operate by simply using the Runtime System.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see

the Programmers Information Section. Also see the appendix for

information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

TABLE OF CONTENTS
SECTION 1. OPERATING COMPILER BASIC

Chapter 1.

Using Compiler BASIC ..occovccocoonsssoocnssss 1-1 to
Takes you through the steps of loading 1-13
and operating Compiler BASIC. |

Chapter 2.

CommMAaNAS ccooocoocsocoacsssssocococssosscccssss 2-1 to
Contains alphabetical entrles on each 2-36

Compller BASIC command.

Radie fhaek

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

INTRODUCTION

This chapter quickly runs through the mechahics of loading and
operating the Model I/III BASIC Compiler. We only mention
certain BASIC commands to illustrate how to operate the
Compiler. The details on each command are in the Commands
Chapter. Details on the Compiler itself are in the Programmers
Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

I. Starting Up Model I/III Compiler BASIC
A. Setting the Date and Time
B. Loading RSBASIC

IT. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

ITI. Using the Diskettes

Assigning File Specifications
. Storing a Program on Diskette
Clearing Memory

. Loading Programs from Disk
Storing Data Files on Diskette

HoOQw»

Radie fhaek

PAGE 1 - 1

MODEL I/III COMPILER BASIC
TRS-80

USING COMPILER BASIC

Inserting a diskette

Radie fhaek

PAGE 1 - 2

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

STARTING UP MODEL I/III COMPILER BASIC

Before loading Compiler BASIC, you need to initialize the Model
I/III disk operating system by setting the date and time. The
operating system, called TRSDOS, is on your RSBASIC diskette and
is loaded automatically when you press the reset button.
The Model I/III Operations Manual explains how to connect and
power-up the Model I/III, and how to properly insert a diskette.
SETTING THE DATE AND TIME
As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YY form and press <ENTER>. For
example:

04/01/80 <ENTER>
sets the date for April 1, 1981.
Next, the system prompts you for the time. To skip this
question, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH:MM:SS form. For example:

14:30:00 <ENTER>
starts the clock at 2:30 PM.
The system returns with this message:

TRSDOS READY

© © ©6 ¢ © © 066 060 02000 ¢ © 00 © © 0 0005 © 0 © 0006 6 0 6 O 6 6000 0 © S O O

At this point you may execute any TRSDOS command or load
RSBASIC.

LOADING RSBASIC
The simplest way to load RSBASIC is to type:

RSBASIC <ENTER>

Radie fhaek

PAGE 1 - 3

MODEL I/ITII COMPILER BASIC USING COMPILER BASIC

TRS-80™

After taking a few seconds to load, BASIC displays a start-up
heading like this:

TRS-80 MODEL I/III COMPILER BASIC (RSBASIC ver 2.4)

(C) 1981 BY RYAN-MCFARLAND CORP. LICENSED TO TANDY CORP.
*

You may now begin programming in BASIC.

Options for Loading RSBASIC

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=XXXX
'"filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing
the top memory address accessible by BASIC
'xxxx' is a hexadecimal address representing the
size of the stack area to be used by BASIC.
"filespec',T='nnnn', and S="'xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:1

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn (where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

Radie fhaek

PAGE 1 - 4

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRSDOS READY
RSBASIC (T=BFO00)

loads RSBASIC. BF00 (decimal 48896) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP (T=E000)

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over EO000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO0 (decimal
192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC (S=0180)

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC (T=E000, S=0180)

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over E000.

Radie fhaek

PAGE 1 - 5

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

PROGRAMMING WITH RSBASIC

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. You must
press <ENTER> to signify the end of the line. This is an
example of how to type a program line:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line

2. CHANGE - replaces one group of characters on program
lines with another.

3. DELETE - deletes one or more program lines

4. DUPLICATE - duplicates one or more of your program lines
in a different part of your program.

5. RENUMBER - renumbers your program.

6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>
Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE. '

The Model I/III keyboard has certain special keys which are
helpful in typing program lines and commands:

Radie fhaek

PAGE 1 - 6

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

<ENTER>

_character

shift <- Erases the current line. Use this

when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay
before that program is executed in order for BASIC to compile
the program.

The BASIC command for executing a program is RUN. To execute
this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>
BASIC compiles and then executes the program. While the program
is executing, the Computer is under control of the program.

These are the two special keys you may use to interrupt
execution of the program:

Radie fhaek

PAGE 1 - 7

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

shift @| Pauses exec
| \gain t0 co

<BREAK>| Terminat
| to terminate
the <ENTER> |

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time with the same values
it had in variable memory the last time it was Run.

Debugging the Program

RSBASIC has four commands to help in debugging a program:

1. TRACE - sets up a tracer which displays each line number
as it is being executed.

2. BREAK - sets breakpoints in the program which break
program execution.

3. STEP - executes a certain number of lines in the program.

4. GO - continues program execution at the next executable
statement.

These commands are detailed in the Commands section.

Radie fhaek

PAGE 1 - 8

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

USING THE DISKETTES

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, the write-protect
notch on the diskette must be uncovered. Cover the notch to
write-protect your valuable diskettes.

Label Leave Uncovered Cover for
to allow Disk Writes ‘Write-Protection

Sector Hole Jacket Read/Write
Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or
remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

Radie fhaek

PAGE 1 - 9

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load the
program by specifying the file name you gave to the file when
you stored it.

The complete syntax for a file specification is:

filename/ext.password:d
'filename' is any name up to seven characters
beginning with a letter.
"/ext' is an optional extension to the filename
consisting of up to three characters.
'.password’ is an optional password with up to
eight characters.
":d' is an optional drive specification (0,1,2, or 3).
You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only 'filename' is essential. Both '/ext' (extension) and
' .password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive
system, it specifies which drive you are using for storage.

Examples of file specifications:

BOOK/BAS .ABCDE: 2
The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM
The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,

BASIC will use the first available drive beginning with drive 0
(the built-in drive).

ACCOUNT1/CMP:1

Radie fhaek

PAGE 1 - 10

MODEL I/III COMPILER BASIC USING COMPILER BASIC

TRS-80™

The filename is ACCOUNT1l. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: For more information on TRSDOS file specifications see
your Model I/III Disk Operating System Manual.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10

You may type:
SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive 0 -- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

Radie fhaek

PAGE 1 - 11

MODEL I/IITI COMPILER BASIC USING COMPILER BASIC

For this reason, you might want to check the diskette's
directory, before you go into RSBASIC, to see what files are
already on the diskette.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below) .

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program.
If you ever need to modify it, you simply edit the original
source program and re-compile it.

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in memory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

Radie fhaek

PAGE 1 - 12

MODEL I/III COMPILER BASIC USING COMPILER BASIC
TRS-80™

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
exanmple:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is loaded,
you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC
offers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>
Loads from diskette the program named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the program
may be executed with RUN.
Unlike OLD, LOAD does not clear memory when it loads a program.

Therefore, you may load a series of Compiled programs into
memory .

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

Radie fhaek

PAGE 1 - 13

TRS-80™

kkhkhkkhkkhkhkkhkhkkkhhkkhhkkhkkkkhhkkhkkhhkkhkkkhkkhhkkhkkhkk

Chapter 2

*
*
*
* COMMANDS
*
*

*
*
*
*
*
*

khkkkkhkkhkkhkhkhkkhkhkkhkhkhhkkhkkhkhkhkkhkkhhkkhhhkkkk

Radio fhaek

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each

command.
two pages.
commands.

The format for each command is explained on the next
On the following page is a brief introduction to

OUTLINE FOR CHAPTER 2
COMMANDS

I. Format for the Command Entries

II. Introduction to Commands

III. Alphabetical Entries for each Command

Radie fhaek

PAGE 2 -1

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

FORMAT FOR COMMAND ENTRIES

1. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself
and may also contain:

b. parameters

c. options
If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. 1In the syntax illustrated
here, you must specify 'startline' and 'endline', if you choose
to use these parameters.

3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

Radio fhaek

PAGE 2 - 2

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-- COMMAND --
LIST (1)

Display Program Lines

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

(3)
You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except LI) S
Examples
LIST
(4)

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radie Sfhaek

PAGE 2 - 3

MODEL I/III COMPILER BASIC COMMANDS
TRS-80

INTRODUCTION TO COMMANDS

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter is 50-80.

When typing a command with a parameter, there must be a space or
a comma after the command. This, for example would produce an
error:

*LIST50-80
A few of the commands also include options:
*LIST 50-80 (PRT)
lists lines 50-80 on the line printer. The option is (PRT).

Options may always be omitted from the command if you don't want
to use them.

Radie fhaek

PAGE 2 - 4

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
~~ COMMAND --

APPEND
Append Two Programs

pecificationftor

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process
by pressing <BREAK>. The lines already Appended will stay in
your resident file, so if you <BREAK> in on the APPEND command,
be sure to Delete those added lines if you do not want them in
the resident file.

Only source programs can be appended. You can not use APPEND to

append an object program from disk which was created with the
COMPILE command.

Resident Program

Disk Program
‘TOfgfj

;20

Radie fhaek

PAGE 2 - 5

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Examples

APPEND PART2/BAS:1l

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 is appended to the resident program. Since no drive 1is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

Radio fhaek

PAGE 2 - 6

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
~~COMMAND -~-

AUTO
Number Lines Automatically

AUTO startline, increment

'startline' is a line number specifying the first
line number to be used.

'increment' is a number specifying the increment
to be used between lines. If increment
is omitted, 10 is used.

If both ‘'startline' and 'increment' are omitted,
startline will be the last line plus 10 and
increment will be 10.

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
your program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies you with a line number that has an
asterisk beside it, this means you have already used this
program line. Press <ENTER> if you do not want to change the
line.

Examples

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

Radie fhaek

PAGE 2 - 7

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
by 10.

AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

Radie fhaek

PAGE 2 - 8

MODEL I/III COMPILER BASIC COMMANDS

TRS-80®

-- COMMAND =--

BREAK
Set or Remove Program Breakpoints

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400

This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters any of these lines.
The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

Radie fhaek

PAGE 2 - 9

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

~- COMMAND --

CHANGE
Change Program Lines

CHANGE startllnewendllne del oldstrlng del
newstring del A . o
'startline' and 'endllne are llne numbers spe01fy1ng
the lower and upper limits of program lines
that will be changed. If ‘endline’ is omitted,
only 'startline' will be changed. If both
'startline' and 'endline' are omitted,
the entire program will be changed. ‘
‘oldstring' and ?newstrlng are string constants
‘del' is any non-numeric character other than "-".
If A is omitted, only the first occurrence of
'oldstring’ in a program line will be changed.

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.

Examples

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines from 100 to 200 are
changed to "LPRINT". Notice that since the A option is not
used, only the first occurrence is changed. 1In this example,
slashes are used as delimiters, although any other character
besides the hyphen could have been used.

CHANGE,TAB(10) ,TAB(5),A

Every occurrence of "TAB(1l0)" is replaced by "TAB(5)" in all of
the lines. Commas are used here as delimiters.

CHANGE 500-1000/REM/

The first occurrence of "REM" in all lines from 500 to 1000 is

Radie fhaek

PAGE 2 - 10

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

changed to the null string; i.e., deleted.
CH 100/JOHN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON" in line 100 to
"JAMES KNIGHT".

Radio fhaek

PAGE 2 - 11

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-~ COMMAND --

CLEAR
Clear All Programs from Memory

. CLEAR

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
object programs from memory.

Example

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

Radie fhaek

PAGE 2 - 12

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

COMPILE
Compile BASIC Program

COMPILE source flle, object flle ”IST, PRT 1lst1ng
file, MAP, XREF) ~ .
~ 'source file' and object flle'kare TRSDOS f11e~
 ;apelelCathnS.‘~
'source file' is a BASIC source program flle -
”:object file' is the object program flle that f[f
~ COMPILE will create . .
All the options below may be omltted-~f .
 LIST generates a source llstlng contalnlng the‘;k
module relative location of every statement.
PRT causes all llstlngs to be printed on the -
llne prlnter.,,~ ;

PRT~'115t1ng flle'k~ Routes the prlnter-formatted
llstlng to the specified file. This must be
~L used 1n conjunctlon w1th LIST, XREF, or MAP.

MAP generates a memory map show1ng the locatlon of

~_each variable in the program. :

XREF prints a cross reference of every reference
to every variable 1n the program. .

COMPILE translates and saves a BASIC program on disk as a
pseudo-code program. Once a program is compiled, it is no
longer a BASIC program. It may not be changed.

For this reason, it is advisable to keep a disk copy of your
BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alone Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

Radse Shaek

PAGE 2 - 13

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

To compile a BASIC program, follow this procedure:

1. wuse the SAVE command to save your BASIC source program

file on disk. Then you may ...
2. wuse the COMPILE command to create an object code program

file on disk from the BASIC source program file.

If the file name you assign to the compiled program already
exists, the existing file's contents will be wiped out. It will
be replaced by your program.

COMPILE can be used with four options:

A. LIST generates a listing of the program containing the
relative memory location of every statement. 1In the listing
below:

#*COMPILE DEMO/BASs DEMO/OBJ (LIST)

Booo 18 REM ##% SAMPLE PROGRAM TO COMPILE ®*%
alralral¥y 20 DIM A(S)

rafharaly B FOR I =1 TO 5

ho1é 40 ACT) = 1 + 10

Bozb 50 NEXT I

Pa2D 60 B% = "THIS IS A SCALAR VARIABRLE"

BA3: B Ch o= 4

Ba37 80 D = 5,234

FINAL GSUMMARY
142 (BOBE) BYTES OF PROGRAM
32 (B14C) BYTES OF LOCAL DATA
8 SOURCE LINES
8 SOURCE STATEMENTS
#%% COMPILATION COMPLETE %%
*

1. the source program is displayed

2. the relative memory location of each statement is
displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 401A.

3. the final summary displays that the entire program uses
142 bytes of memory. The variables in the program use 332

bytes.

Radie fhaek

PAGE 2 - 14

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

B. MAP shows the hexadecimal memory location of the
variables in the program. In the example below:

#COMPILE DEMO/BASs DEMO/OBJ (MAP)
SYMBROLIC MEMORY MaP

SCALARE

@78 B STRING#:235 BRaAD c INTEGER
praz D REAL. AR8E I REAL
ARRAYSE

aa7e ACH) REAL

*

the program contains four scalars (simple variables) and one
array variable. In this example B is a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 0070.

C. XREF generates a cross reference listing. Each variable
is cross referenced with all the line numbers which referenced
it. In the example below:

¥*COMPILE DEMO/BASs DEMO/OBJ (XREF)
CROSS REFERENCE LISTING

SCALARS

B 60

C 70

D 80

I 3@ 40 40 50
ARRAYS

A 20 40

*

the variable I is referenced on lines 30, 50, and twice on line
40.

D. PRT causes any of the above listings to be listed on the
line printer.

Radie fhaek

PAGE 2 - 15

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

E. PRT = 'listing file'. This causes the listing to be saved
in the specified file. This option must be used in conjunction
with LIST, MAP, or XREF. For example:

COMPILE FILE/BAS, FILE/OBJ (LIST, PRT=FILE/LST)
creates a listing file containing a list of FILE.
COMPILE FILE/BAS, FILE/OBJ (MAP, PRT=FILE/LST)
creates a listing file containing a map of FILE.
To print the listing file, you must use a special program named

LIST/OBJ, which is on your Compiler BASIC diskette. Instructions
on how to use it is in the Appendix "LIST and SAMPLE Programs"”.

Examples

COMPILE BILLING/BAS:0, BILLING/CMP:1l

The program BILLING/BAS in drive 0 is compiled and saved as a
pseudo-code program named BILLING/CMP on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo-code program
named OBJECT.

COMPILE PAYROLL/BAS, PAYROLL/CMP (LIST, PRT)
The source program PAYROLL/BAS is compiled and saved on disk as
the pseudo-code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP (MAP, XREF)

BASIC compiles this file and displays a memory map and a Cross
reference listing.

Radio fhaek

PAGE 2 - 16

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND =-

DELETE
Erase Program Lines from Memory

e 1 ”ur‘program
~ 'endline' - must

- startl’ne‘5';ll be deleted.f1 “

DELETE removes one or more program lines from memory. Another
way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110
Erases lines 50 through 110, inclusive.
70

Erases line 70.

Radio fhaek

PAGE 2 - 17

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

== COMMAND =--

DISPLAY
Display Variable Contents

DISPLAY subname* varlable llst, subname varlable~“
name... ~ .
;'subname"ls the'name of a subprogram.”e

~ omitted, the variable contents of th ma;nx

i”kprogramkw1Ll be dlsplayed

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.

Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

DISPLAY A

Displays the contents of variable A in main memory.
DISPLAY A,BS

Displays the contents of variables A and B$ in main memory.
DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Y in
the main program or subprogram being executed.

Radio Sfhaek

PAGE 2 - 18

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

DUPLICATE
Duplicate Program Statements

“UPLICATE startllne-endllne, new startllne ;

tl ~and 'endline' are the lower and upper ;
es of the lines you want to dupllcate.ri~‘
, ’endl ne' is omltted, only startllne will
- be dupllcated. :
'new startline' is the program llne Wthh you Want
_the dupllcated lines to follow. 'New startline'
_~must be a current program]1ne.‘ -

b e Gt

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a
compiled object code program.

Examples

DUPLICATE 100-150, 300
The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51.

Radie fhaek

PAGE 2 - 19

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

~-- COMMAND --

GO
Start or Continue Program Execution

GO continues execution of the program after a breakpoint has
been encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

Starts or continues executing the program.

Radie fhaek

PAGE 2 - 20

MODEL I/IITI COMPILER BASIC COMMANDS

KILL
Delete File from Disk

TRS-80™

-— COMMAND --

KILL deletes the file

you specify from the diskette directory.

You may Kill a file you will not use again to make room for

storing another file.

If you do not specify
BASIC will search for
and delete it.

Make sure that you do

the OPEN statement to
file.

Examples

KILL FILE/BAS

deletes FILE/BAS from
contains it.

KILL DATA:2

deletes DATA from the

a disk drive in the file specification,
the first drive that contains the file,

not Kill an open file. If you have used
open a file, close it before Killing the

the diskette in the first drive that

diskette in drive 2 only.

Radie fhaek

PAGE 2 - 21

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-— COMMAND --

LIST
Display Program Lines

' LIST startllne, dlin
'startlln s i
; limit the
'~'end11ne‘“”“”' i oe ; Eh uoperyllmlt
for the llstlng Ifﬁomltted only startllne -
- ~will be listed . “ ..
~g'str1ng is a strlng"cor .
If A is omltted, only the flrst statement whlch -
contalns strlng w1ll be llsted strlng A may
. be omltted
:rfPRT causes the/
- rather than the video dlsnlay . -
_QYNote-aylf both 'startline' and endllne are om1tted,~f~“
'7?;;t,ete tlre program w1ll be llsted ..

1sting to appear{

n the llne prlnter

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the-lines. You can use the PRT option to cause the
listing to be printed on the line printer, but if the 'string'
option is used, the 'A' option must also be used.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters

except - ",

Examples

Displays the entire program. To stop the automatic scrolling,
press <shift @>. This will freeze the display. Press <shift @>
again to continue the listing.

LIST 50

Radie fhaek

PAGE 2 - 22

MODEL I/IITI COMPILER BASIC COMMANDS

TRS-80™

Displays line 50
LIST 50-85

Displays lines 50 through 85, inclusively.
LIST 50 (PRT)

Prints line 50 on the line printer.
LIST 50-85 (PRT)

Prints lines 50 through 85, inclusively, on the line printer.
LIST "PRINT" A

Lists all statements which contain the word PRINT
LI /INSERT/

Lists the first statement which contains the word "INSERT".
LI 50-80/INSERT/A (PRT)

Lists all statements between line 50 and line 80, inclusively,
which contain the word INSERT, on the line printer.

LTI 50-80/INSERT/ (PRT)

Will cause a syntax error.

Radie fhaek

PAGE 2 - 23

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-- COMMAND --
LOAD

Load Compiled BASIC Programs

LOAD file -
'file' is a TRSDOS file specification for a =
~ compiled object code program.

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
only load object code programs. Use OLD to load BASIC source
programs from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
be loaded before executing them. The loading process links the
programs together.

Examples

LOAD PROG1l/CMP:2
This loads PROGl/CMP from drive 2.
LOAD PROG1l/CMP
Since no drive specification is included in this command, BASIC
gill begin searching for this program file, starting with drive
LO SUBPROG/CMP:l

BASIC loads this subprogram from drive 1.

Radie fhaek

PAGE 2 - 24

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

MERGE
Merge Disk Program with Resident Program

MERGE flle ; - - - ‘
'file' is a TRSDOS flle spec1f1catlon for a BASIC
isource flle._‘;~, - e

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and
merges it with the BASIC program you presently have resident in
memory .

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on
the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and
20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

Radie fhaek

PAGE 2 - 25

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
Resident Program Disk Program Merged Program
0 G R ; SR s
20
20
30
30
Examples :)
MERGE PROG -

This merges the BASIC source program on disk named PROG with
whatever BASIC program is resident in memory.

ME PROG/BAS:1

This merges PROG/BAS from the disk drive number 1 with the BASIC
program resident in RAM.

Radio fhaek

PAGE 2 - 26

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-—- COMMAND --

NEW
Erase BASIC Program from Memory

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command.

Example

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep your compiled subprograms in
memory to use with your next BASIC program. By executing the
command:

NEW
Your main BASIC program is erased from memory, but all object

programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

Radio Shaek

PAGE 2 - 27

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

OLD
Load BASIC Source Program

'file' is a TRSDOS file specificat

The OLD command loads a BASIC source program, saved on disk,
into RAM. OLD will only load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs before loading a
program, only one BASIC program may be loaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

— o s oo

OLD PROG/BAS:2
Loads PROG/BAS into RAM from drive 2.
OL PROG/BAS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

Radie fhaek

PAGE 2 - 28

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND =--

RENUMBER
Renumber Program

1s'used for newllne and,lO for‘1ncrement.~.

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON...GOTO, ON...GOSUB, and ON ERROR GOTO.

Examples

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

Radio fhaek

PAGE 2 - 29

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

RUN
Execute Program

RUN flle . o
_'file! is a TRSDOS flle spec1f1catlon. It may
~ be a BASIC source program file or an object
code program file. If omltted tne reSLdent
program w1ll be run. . . .

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there
will be a short delay while RUN 1s compiling the program before
running it. :

If you include a file specification, BASIC will Load or 0ld the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.
RUN
Executes the program in resident memory.

RUN PROGRAM/CMP:?2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
it.

RUN PROGRAM/BAS
Loads the BASIC source program PROGRAM/BAS and executes it.
RU PROGRAM

Loads the program PROGRAM and executes it.

Radie fhaek

PAGE 2 - 30

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-- COMMAND --

SAVE
Save BASIC Source Program on Disk

BASIC has two commands for storing programs on a disk file: SAVE
and COMPILE. SAVE stores the program in its existing BASIC
source program format. COMPILE converts the program and stores
it as an object code or machine language program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section
on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled ‘programs.

A Saved program is in ASCII code or text format.

Examples

SAVE FILE1l/BAS.JOHNQDOE:3

Radio fhaek

PAGE 2 - 31

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

Saves the resident BASIC program. The filename is FILEl, the
extension is /BAS, and the password is JOHNQDOE. The file is
stored on the disk in drive 3.

SAVE FILEl/BAS

Saves the resident BASIC program. The filename is FILEl and the
extension is /BAS. Since no drive is specified, BASIC will
store the program in the first drive which has room for it.

SA

Saves the resident BASIC program. It will be saved under the
same file specification used in the last OLD command.

Radio fhaek

PAGE 2 - 32

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

SIZE
Print Used and Unused Memory

f;i;SiZE ‘T

By executing the SIZE command, BASIC will print the amount of
space being used by the resident program and the amount of space
that is unused. The values are expressed in bytes both as a
decimal and a hexadecimal value.

Example

SIZE

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

Radie fhaek

PAGE 2 - 33

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™

-~ COMMAND -~

STEP
Execute Portion of Program

~ 'number' is the

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute
the entire program portions at a time using STEP.

Example

STEP 5

Executes the next five statements in the program.

Radie fhaek

PAGE 2 - 34

MODEL I/III COMPILER BASIC COMMANDS

TRS-80™
-~ COMMAND --

SYSTEM
Return to TRSDOS

svetM

SYSTEM returns you to TRSDOS, the disk operating system.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will
be lost.

Radie fhaek

PAGE 2 - 35

MODEL I/III COMPILER BASIC COMMANDS
TRS-80™

-—- COMMAND --

TRACE ON, TRACE OFF
Turn Tracer On, Off

 mmacs on
 TRACE OFF

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to a
new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF
Turns off the tracer.
TRACE

Prints whether the tracer is on or off.

Radioe fhaek

PAGE 2 - 36

Section 2

Programming
with RSBASIC

CAT. NO.
26-2204

information on writing
a program with RSBASIC

CUSTOM MANUWFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP

TRS-80™

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press,
1977.

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.

BASIC CONCEPLS cceveecoccccooccccnoonnsns 3-1 through
Explains how BASIC handles and 3-37
manipulates data

Chapter 4.

Building Data Files ..c.cceocccoccsssns 4-1 through
Shows how to create and store 4-39

data files

Chapter 5.
Segmenting ProgramsSoceeeeoosecoooces 5-1 through
Demonstrates how to divide a 5-14

long program into shorter programs
and subprograms

Chapter 6.
BASIC KeyWOordS ...ccecosoossscscsssssss 6-1 through
Contains an alphabetical entry 6-195

for each keyword

Radio fhaek

TRS-80™

SPECIAL MODEL I/III PROGRAMMING TIPS

Programming the Video Display

The Model I/III Video Display has two modes: scroll and
graphics. With the exception of graphics characters, BASIC
prints all output to the display using the scroll mode. See
PRINT for information on programming in the scroll mode. See
CRTG for information on programming in the graphics mode. (Both
PRINT and CRTG are in the Keywords Chapter).

Radie fhaek

TRS-80™

khkkkkhkhkkkhkkhkkhkhhhhkhkhkhkhkhkhkhkhkhkhkkhhhhkhkkhhkhkkkhkkhkhkhkhkhkhkkkhhkkhhik

Chapter 3

* *
* *
* *
* BASIC Concepts *
* *
* *

kkhkkkkhkkkhkhhkhkhkhhhhhhkhkhkhkhkhhkhkhkkhhkkkhkhhkhkhhhkkhkhkkhkhhhkhkhkk

Radio fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80

INTRODUCTION

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

I. Overview —-- Elements of a Program
A. Program
B. Statements
C. Expressions
D. Tests

II. How BASIC Handles Data
A. Ways of Representing Data
1. Constants
2. Variables
a. Variable Names
b. Reserved Words
c. Simple and Subscripted Variables
B. How BASIC Stores Data
1. Numeric Data
a. Integers
b. Real Numbers
2. String Data
C. How BASIC Classifies Constants
D. How BASIC Classifies Variables
E. How BASIC Converts Numeric Data
1. Real Number to Integer Type
2. Integer to Real Number Type
3. Illegal Conversions

ITII. How BASIC Performs Operations on Data
A. Operators
1. Numeric
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. Integer Division
f. Exponentiation
g. Modulus Arithmetic
2. String
3. Test Operators
a. Relational

Radio fhaek

PAGE 3 -1

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
b. Logical
B. Functions
IV. Syntax of Expressions

A. Simple Expression
B. Complex Expression
C. Function

Radie fhaek

PAGE 3 - 2

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

OVERVIEW -~ ELEMENTS OF A PROGRAM

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from 0 to 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.)

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line BASIC colon between BASIC
number statement statements statement

100 PRINT : PRINT "THIS IS THE FIRST PRINT LINE"
110 FOR I = 1 TO 1000: NEXT I : 'DELAY LOOP
120 PRINT STRINGS (28,"-");

130 PRINT "THIS IS THE NEXT"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some
statements, such as GOTO, ON...GOTO, GOSUB, change this
sequence.

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

Radio fhaek

PAGE 3 - 3

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:

(1L + 5.2) / 3 D
5 % B 3.7682
ABS(X) + RND(0) SIN(3 + E)

2. String expressions, which are composed of character data.
Examples:

AS "STRING"
"STRING" & "DATA" MOS$ & "DATA"
SEG$ (AS$,2,5) & SEGS("MAN",1,2) M$ & AS$ & BS

Functions

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -- as part of a statement.

Radie fhaek

PAGE 3 - 4

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are some of BASIC's functions:

INT

ABS
STRINGS
SEGS

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A =1
AS > BS

2. Logical tests, which test the logical relationship
between relations. Examples:

A$ = "YES" AND B$ = "NO"
C >50RM<LKBORO>2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you
enough information if you are in a hurry to begin using Compiler
BASIC,

Radio fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC HANDLES DATA

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DATA

BASIC recognizes data in two forms —-- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as "constants" -- values which
are not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,
1 PLUS 1 EQUALS
and one numeric constant
2

In these examples, the constants are "input" to the PRINT
statement. They tell PRINT what data to print on the Display.

Radie Sfhaek

PAGE 3 - 6

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

These are more examples of constants:

3.14159 "L. O. SMITH"
1.775E+3 "0123456789ABCDEF"
"NAME TITLE" -123.45E-8
57 "AGE"
Variables
A variable is a place in memory -- a sort of box or pigeonhole

-—- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing quantities. For example, in the statement:

AS$ = "OCCUPATION"

The variable AS now contains the data OCCUPATION. However, if
this statement appeared later in the program:

A$ = "FINANCE"

The variable AS would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names
In BASIC, variables are represented by names. Variable names
must begin with a letter, A through Z. This letter may be upper
or lower case and may be followed by up to 5 characters --
either digits or letters -- for a total of 6 characters.
For example

AMOUNT A Al2345 Al B1AB2 aB

are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

Radio fhaek

PAGE 3 - 7

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™
For example:
SUPERN SUPERNUM SUPERNUMERARY

are all treated as the same variable by BASIC.
Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the operator NOT as variable names. For example:

ABS SIN LEN ASC
cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable

names. For example, ABS]1 and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET = 10
is okay, but
LET = 10

is not.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of data
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A(0) A(l) A(2) A(3) A(4)

You may use each of these elements to store a separate data
item, such as:

A

WN O
————
o
o W< RN NE)
0o WM w

(
(
(
(

g

Radie fhaek

PAGE 3 - 8

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two
dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0)
X(1,0)

8.6 X(0,1) = 3.5
7.3 X(1,1) = 32.6

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
with:

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(1,1)
to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted

variables.

Note: See DIM for more information on arrays.

Radio fhaek

PAGE 3 - 9

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory
it will consume and the speed in which BASIC can process it.

Numeric Data

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:
1 32000 -2 500 -12345
can all be stored as integers.

Note: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (It prints the first 6 digits,
rounding off the last digit.)

This is the range of real numbers:

[-1 * 10 ** -64, -1 * 10 ** 63], or
[1 * 10 ** -64, 1 * 10 ** 63]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

Radio fhaek

PAGE 3 - 10

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Note: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix.)

For example, the data constant:

Jack Brown, Age 38
can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one

byte of storage. BASIC would store the above string constant
internally as:

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

Radio fhaek

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC CLASSIFIES CONSTANTS

When BASIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

If the value is enclosed in double-quotes, it is a string. For
example:

IUYES 11}

"3331 wWaverly Way"

"1234567890"

the values in quotes are automatically classified as strings.

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&0 &7FCO &FFFF

are all hexadecimal numbers. Hexadecimal numbers are actually
stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

If the value is not in quotes, it is a number. (An exception to
this rule is during data input by an operator. See INPUT, LINE
INPUT, INKEYS$, and INPUTS.)

For example:
123001
1
-7.3214E+6

are all numeric data.

Radie fhaek

PAGE 3 - 12

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Whole numbers in the range of -32768 to 32767 are integers. For
example:

12350

-12
10012

are integer constants.

If the number contains a decimal point or is outside the integer
range defined in rule 3 above, it is real. Also, if it contains
the letter E, it is real.
Note: Exponents are printed with the letter E. The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7
Represents the value 10000000, or 1 * 10 ** 7.

1. E-8

Represents the value .00000001 or 1 * 10 ** -8,

Radio Shaek

PAGE 3 - 13

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types
and stores them in 8 bytes. For example:

AB AMOUNT XY L

are all real number variables initially. If this is the first
line of your program:

LP = 1.2

BASIC will classify LP as a real number variable.

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING
INTEGER
REAL

The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

Radie fhaek

PAGE 3 - 14

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

instructs BASIC to classify all variable names as string.

STRING L

2

instructs BASIC to classify only those variable names beginning
with the letter L as string.

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN"

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space. '

255 bytes

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this
program:

10 STRING*4 L
20 L = "JOHN"
30 LAST = "ALEXANDER"

L and LAST will each contain 4 bytes of string data:

e 4 bytes _— e 4 pytes e

If you want to store all variable names beginning with the

Radie Sfhaek

PAGE 3 - 15

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

letter L as string variables except for the variable LAST, you
can use the DIM statement:

10 STRING*4 L
20 DIM LASTSO9
30 L = "JOHN"
40 LAST = "ALEXANDER"

This program stores the variable L in 4 bytes and LAST in 9
bytes. — — ——

9 bytes J

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example:

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER
instructs BASIC to classify all variable names as integers.

In the present form of BASIC, all integer variables are stored
in 2 bytes.

The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

Radie fhaek

PAGE 3 - 16

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

20 REAL X-7Z

instructs BASIC to classify all variable names, except for those
beginning with X, Y, or Z, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements

You cannot introduce a definition statement after an executable
statement. An executable statement is a statement other than a
definition statement. For example:

10 L = 10
20 STRING

produces an error, since STRING may not follow the executable
statement L = 10. However,

10 STRING
20 L = 10

1s correct.

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

S String
% Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MONS$ FINANCES CHARTS

will all be classified as string variable names, regardless of

Radio Shaek

PAGE 3 - 17

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80

what attributes have been assigned to the letters S, M, F, and
C.

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

I% LM% NUM% COUNTERS®

will all be classified as integer variable names, regardless of
what attributes have been assigned to the letters I, L, N, and
C.

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR# ER# MP235# LITE#

will all be classified as real number variables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB = "NEW"

The statement:
30 AB% =1

produces an error, since AB has already been classified as a
string variable and cannot be re-classified. However:

30 AR% =1

is accepted, since the type declaration tag (%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

B$ = "DATA"

You may refer to the string variable B$ as simply B. B will
retain the classification of a string variable throughout the
rest of the program.

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

Radie Sfhaek

PAGE 3 - 18

MODEL I/IITI COMPILER BASIC BASIC CONCEPTS
TRS-80™

name. This makes the program more consistent and simplifies
editing.)

Radie fhaek

PAGE 3 - 19

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A =5

or a real number constant to an integer variable, such as:

To do this, BASIC must first convert the data constant. This is
how it is done:

Real Number to Integer Type

BASIC truncates (ignores) the fractional part of the original
value. The truncated value must be in the range of [-32768,
32767 1.
Examples
A% = -10.5
Assigns A% the value -10.
A% = 32767.9
Assigns A% the value 32767.
A% = 2.5E+3
Assigns A% the value 2500
A% = -123.45678901234
Assigns A% the value -123.

A% = 60000

Prints an integer overflow warning and assigns A% the value
32767. (32767 is the highest number that can be stored as an
integer).

Radie fhaek

PAGE 3 - 20

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer to Real Number Type

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much

storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:
A =1

Stores 1.0000000000000 in A.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

1234
"1234"

AS
A%

are illegal. (Use STR$ and VAL to accomplish such conversions).

Radie fhaek

PAGE 3 - 21

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC PERFORMS OPERATIONS ON DATA

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS
An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as

operands.

In general, an operator is used like this:

operand-1l operator operand-2
operand-1l and -2 can be expressions.

A few operations take only one operand, and are used like this:

operator operand
This is the form for a unary operation.

Examples:
6 + 2

The addition operator + connects or relates its two operands, 6
and 2, to produce the result 8.

Radie fhaek

PAGE 3 - 22

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

-5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A =6+ 2
PRINT -5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they involve more bytes.
There are nine different numeric operators. Two of them, sign +
and sign -, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.
For example, in the statement:

PRINT =77, +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

Radio fhaek

PAGE 3 - 23

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

take two operands. These operators are:

+ Addition

- Subtraction

* Multiplication

/ Division

! Integer division (keyboard character <SHFT 1>
k% Exponentiation

MOD Modulus arithmetic

o - ———— > —— — " - —— i " WD S) > S Wime S s N NN MR A D S R D D e S D S — s . ain o —— — — o -

Addition
The + operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Otherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition. .
Note: See the section on How BASIC Converts Data (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.
Examples:

PRINT 2 + 3
Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3

Real number addition. (The integer 3 is converted to a real
number.)
Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

Radio fhaek

PAGE 3 - 24

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

PRINT 33 - 11
Integer subtraction.
PRINT 12.345 - 11

Real number subtraction.

Multiplication
The * operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication.
Examples:

PRINT 33 * 11
Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division
The / symbol indicates ordinary division. Division is always
with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.
Examples:

PRINT 3/4
Real number division.

PRINT 3 / 1.2

Real number division.

Radie fhaek

PAGE 3 - 25

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

Integer Division
The integer division operator ! is input by pressing <SHIFT 1>.
It converts its operands into integer type, then performs
integer division. 1In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
outside the range [-32768,32767], an error will occur.)
For example:
PRINT 7 ! 3
prints the value 2, since 7 divided by 3 equals 2 remainder 1.
PRINT -7 ! 3

prints -2.

Exponentiation

The symbol ** denotes exponentiation. It converts both its
operands to real numbers and returns a real number result.

For example:
PRINT 6 ** _3

prints 6 to the .3 power.

Modulus Arithmetic

The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24-hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.

MOD requires two operands, for example:
A MOD B

B is the modulus (the counting base) and A is the number to be

Radie fhaek

PAGE 3 - 26

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

converted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. 1In this sense, it is the
converse of !, which returns the whole number quotient and
ignores the remainder.)

MOD converts both operands to integer type before performing the
operation. If either operand is outside the range
[-32768,32767], an error will occur.

Examples:

PRINT 155 MOD 15

Prints 5, since 155!15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12
Prints 7, since 79!12 equals 6 with remainder 7.
PRINT ~-79 MOD 12
Prints -7.
10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A$%
30 PRINT A; "=":; A ! 90; "™ * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

BASIC has a string operator (&) which allows you to concatenate
(link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

PRINT "CATS " & "LOVE " & "MICE"

prints:

Radio fhaek

PAGE 3 - 27

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

You may use test operators in IF...THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test- operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are <, >, and =; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relations:

2

MDD

ANAN
v

5
5
2

Radie fhaek

PAGE 3 - 28

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

v

5 2
7 7

Relational operators may only be used in an IF...THEN statement.
For example

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if X is larger than 100, then
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence

= Precedes or has the same precedence
= Follows or has the same precedence

BASIC compares the string expressions on a character-by-
character basis. When it finds a non-matching character, it
checks to see which character has the lower ASCII code. The
character with the lower ASCII code is the smaller (precedent)
of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples
IIAII < IIBII

The ASCII code for A is decimal 65; for B it's 66.
"CODE"™ < "COOL"

The ASCII code for O is 79; for D it's 68.

Radie Shaek

PAGE 3 - 29

MODEL I/ITII COMPILER BASIC BASIC CONCEPTS

TRS-80™

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL" < "TRAILER"
Leading and trailing blanks are significant. For example:

1] A 1] < "A w
ASCII for the space character is 32; for A it's 65.

"Z-80" < "Z-80a"

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF...THEN statements. These are examples of how
they might be used:

IF AS$ < B$ THEN 50

If string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF RS = "YES" THEN PRINT AS$

If RS equals YES then the message stored as A$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IF A=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A=1 and
c=2.

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

Radio fhaek

PAGE 3 - 30

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

This is how to use the logical operators:
AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical false. For example:

IF A = B AND B < 0 THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME = OVER OR TIME >= LATE THEN 500

XOR ("Exclusive OR"™)

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF AS = "YES" XOR B$ = "YES" THEN PRINT "ONLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(AS$ < "M") THEN PRINT AS$; "DOES NOT PRECEDE M"

Hierarchy of Operators

—————— ———————— —— —— ——— -

When your expressions have multiple operators BASIC performs the
operations according to a well-defined hierarchy so that results
are always predictable.

Parentheses

Radie fhaek

PAGE 3 - 31

MODEL I/III COMPILER BASIC BASIC CONCEPTS

TRS-80™

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression: : :

8 - (3-2)

is evaluated like this:

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))
is evaluated like this:

3 -4=-1
2_

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT:

Numerical operations:

% %

+, - (unary sign operations -- not addition or
subtraction)

*, /

!

MOD

+, -

<, >y o=, <=, 0=, O

NOT

AND

OR

Radie fhaek

PAGE 3 - 32

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

XOR

String operations:

&

<, >0 =4 <=, >=, <>
NOT

AND

OR

XOR

For example, in the line:
X * X + 5%%2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 5*%%2.8)
or
X * (X + 5)*%2.8
Here's another example:
IF X=0 OR Y > 0 AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X =0 OR ((Y>0) AND (%2=1)) THEN 255

Radio fhaek

PAGE 3 - 33

MODEL I/III COMPILER BASIC BASIC CONCEPTS
@@

FUNCTIONS

A function is a built-in sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data item. The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC routine would.

A function consists of a keyword followed by the data that you
specify. This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.
If the data required is termed 'number' you may insert any
numerical expression. If it is termed °'string' you may insert
either a string constant or a string variable.
Examples:

SQR(A + 6)
Tells BASIC to compute the square root of A + 6.

SEGS (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting
with the third character, with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement.
For example

A = SQR(7)
Assigns A the data returned as the square root of 7.

PRINT SEGS$ (A$, 3, 2)

Prints the substring of A$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

Radie fhaek

PAGE 3 - 34

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

SYNTAX OF EXPRESSIONS

Understanding the syntax of expressions will help you put
together powerful statements -- instead of using many short
ones.

As we have stated before, an expression is actually data. This
is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants
Variables
Operators
Functions

Expressions may be either simple or complex:

A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be
preceded by an optional + or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

AS STRINGS (20, AS) "WORD" "M"

are all simple string expressions since they only consist of one
string term.

Radio fhaek

PAGE 3 - 35

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

Here's how a simple expression or a term is formed:

A COMPLEX EXPRESSION consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3.2-Y A/3 * (LOG(Y)) ABS(B) + LOG(2)
are all examples of complex numeric expressions.
AS & BS "Z" & Z$ STRINGS (10, "A") & "M"
are all examples of complex string expressions.

This is how a complex numeric expression is formed:

Radie Sfhaek

PAGE 3 - 36

MODEL I/III COMPILER BASIC BASIC CONCEPTS
TRS-80™

This is how a complex string expression is formed:

Most FUNCTIONS, except functions returning system information,
require that you input either or both of the following kinds of
data:

one Or more numeric expressions
one or more string constants or string variables

This is how a function is formed:

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expression.

Radio fhaek

PAGE 3 - 37

TRS-80™

kkhkhkhkkhkkhkhkhkkhkhhhhhkhkhhhkhhhhhhhhhhkhhhhhhhhhhdhkk

* *
* Chapter 4 *
* *
* BUILDING DATA FILES *
* *
* %

kkkkkhkkkhkkhkhhhkhhhkhhhhhhkhhkkhkhhhkhkhhkhkkhkhkhhkhhhhkhk

Radie fhaek

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INTRODUCTION

This chapter explains how to write a BASIC program which will
store data files on Model I/III diskettes. The Overview
explains the different methods- you can use to store data. The
next sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

I. Overview
A. Introduction to Data Files
B. Types of Records
1. Fixed Length Records
2. Variable Length Records
C. Ways of Accessing Records
1. Sequential Access
2. Direct Access
3. 1Indexed Access (ISAM)
D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

IT. Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/Output
C. Using Binary Input/Output

III. Building a Direct Access File
A. Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

IVv. Building an Indexed Access File

Radio fhaek

PAGE 4 - 1

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

OVERVIEW

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from one to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains 50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. 1If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE" command. (See the Model I/III Disk Operating
System.)

This overview covers:

1. the types of records you can build

2. the different ways you can access these records,

3. the methods you can use to input and output data to
these records.

Radio fhaek

PAGE 4 - 2

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
you open the file for use. Once set, the length may not be
changed unless you are over-writing the file with new data.

This is a picture of an FLR file containing three records:

RECORD 1 RECORD 2 RECORD 3

P | mmmm e | =t

The advantage of using FLRs is that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of
empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

Radie fhaek

PAGE 4 - 3

L

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted

in a VLR file; each new record begins where the data in the last
record ended.

Radio fhaek

PAGE 4 - 4

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:.

1. sequential access
2. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

A sequential access file is normally made up of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3, ... , the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build, but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,
make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1. Files which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4, Files where the maximum record length cannot be
determined in advance.

PAGE 4 - 5

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Storage Format

In a variable length sequential access file, the first byte in
each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Building a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing list. »

2. Files which need to be continually updated such as
inventory data.
Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

Radie fhaek

PAGE 4 - 6

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

6

———

0

R

E

C

0

R

D

The first byte of the record contains the actual number of bytes

of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it contains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount of space on disk as all the other records. This
is what record 2 would look like:

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs" the data by assigning all

the records new record numbers; thereby eliminating the space
being consumed by deleted records.

0

0

Indexed Access (ISAM)

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the record. Rather than
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string.

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her

Radie fhaek

PAGE 4 - 7

MODEL I/III COMPILER BASIC | BUILDING DATA FILES
TRS-80™

record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section.)

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and
deleted.

Radie fhaek

PAGE 4 - 8

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

SEQUENTIAL ACCESS

BEGINNING
FILE END

RECORD 2 RECORD 3

DIRECT ACCESS

3

RECORD 2 RECORD 3

INDEXED ACCESS

RECORD 2

Radie fhaek

PAGE 4 - 9

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will be stored in the record
2. how the data will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields as you can
fit in the record.

BASIC offers three methods of inputting and outputting data to a
record:

l. Stream
2. Pormatted
3. Binary

Each of these methods may be used with any type of records and
with any type of access method.

The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space on the diskette.

The binary method stores numeric data the same way it is stored
in memory: integers in two bytes and real numbers in a maximum
of nine bytes. For instance, the integer -23456 would consume
six bytes of disk space with stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator is
necessary.

Note: 1In the following illustrations of stored records, only
the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

Radie fhaek

PAGE 4 - 10

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

(sequential, direct, or indexed).

Stream Input/Output

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, and the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

1. first name
2. last name
3. ID number

And this was the data for the first two records:

First name Last name ID

(FIRSTS) (LASTS) (ID)
record 1 J DAY 42
record 2 JANE MILLER 2

You would input the data simply by using a comma to delimit the
end of one field and the beginning of the next field:

FIRSTS$, LASTS, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

-~
JANE,MILLE’R',‘ 2,

Notice that each new field of data requires one extra byte of
disk space for the comma.

Radie fhaek

PAGE 4 - 11

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the number. However
if you output the ID as a string (IDS$):

FIRSTS, LASTS, IDS

no leading blank would be required in storing the number:

B el e B B B T

’Jl,lD’AIYI,[l& 2 |

Stream input/output is best suited for VLRs, since the fields in
each record may differ in length. However, the stream method
may also be used with FLRs.

Formatted Input/Output

USRI U ——————

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the diskette. This allows
you to use the image to control exactly how and where each field
of data will be stored on the disk.

For example, you could output the same data as above using the
formatted method with this image:

<HEFH<HEHH<H

to format four characters for the first field, five for the
second, and two for the third, with each field left justified.
This is how the data would be stored:

Radie fhaek

PAGE 4 - 12

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number.

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating them.

Binary Input/Output

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data
Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation.

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.

For example, the integers 22, 333, 4444 would be stored as
follows:

6

22 333

-__l___ ___l___

4444

- | ——

N

The first byte tells how many bytes of data are in the three
following fields. Notice how each integer requires two bytes of
storage. No extra bytes are required to separate each field.

Radio fhaek

PAGE 4 - 13

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

The real numbers 2000 and 3333 would be stored in this format:

7 2 |44 2 3 44| 33| 33

FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes long. The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE" would be stored in a record
in this form:

L

E

A

R

Y

4

——

F

I

12

6

B

I

N

Notice that each field contains a leading length byte.

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing

sales data or accounting data would be best stored using the
binary method.

Radie Shaek

PAGE 4 - 14

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING A SEQUENTIAL ACCESS FILE

As we discussed in the overview of this chapter, you have a
choice of three methods you may use in building a sequential
access file: -

l. Stream method
2. Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you do not have to format the
length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

Radie fhaek

PAGE 4 - 15

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

4. update the file

Building the File (Output to the File)

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT #.

3. Repeat step 2 until your program has printed all the
records to the disk file, and then

4., Close the file with CLOSE.

Here is a sample program, along with a sample run of the
program, which builds the file using these four steps:

13 REM *#% DEMO OF STREAM OUTPUT TO A SEQUENTIAL FILE #%x
20 REM
@ OPEN #1s "ITEM/DAT"s MODE=Ws TYPE=H
4@ PRINMT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
S8 INPUT NO%s NAME$s DEGSY®
H@ PRINT $#15 NO$s NoME$s DESGS
7@ PRINT "I THERE ANOTHER ITEM (Y/N)?"
80 INPUT ANSWERS
9@ IF ANSWER$ <> "N" THEM 4@ ELSE CLOSE #1
#RUN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7111

7 PAPER

7 LEGAL PAD B 1/2 X 11 5@ SHEETS

I5 THERE ANOTHER ITEM (Y/N)7

7Y

INFUT (1) ITEM NO. (2 NaME (3) DESCRIPTION OF ITEM

7 PN

7 BLUE INK BaALL POINT MEDIUM INK
I8 THERE ANOTHER ITEM (Y/N)7

7 N

Line 30 opens the file with the OPEN statement. (See OPEN):
- it references it as file unit #1 (You may have several

Radie Sfhaek

PAGE 4 - 16

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

LA 2

files open at the same time as demonstrated later in this
section.)

- it names it with the file specification of ITEM/DAT

- it sets the MODE to W since we are writing data to the
file.

- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NO$, NAMES and DESS. Notice that the PRINT #
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

To read all the data records you have put in your file, you need
to have your program do these five things:

1. Open the disk file with OPEN.

2. Read in a data record with INPUT #. :

3. Use EOF to see if you have reached the end of the file
yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

1@ REM *#¥ DEMO OF STREAM INPUT FROM A& SEQUENTIAL FILE *%%
2 REM

i OFEN #1s "ITEM/DAT"s MODE=Rs TYPE=S

40 INPUT #1135 NO%s NOMES$: DESS$

5@ IF EOF(H#1) <> @ THEN 2@

HB FRINT ¢ PRINT "ITEM NUMBER = "3NO$s "NAME = "35NAME$
7@ PRINT "DESCRIPTION OF THE ITEM @ "3 DESS$

BB GOTO 40

90 CLOSE #1

Radie fhaek

PAGE 4 - 17

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

ITEM NUMBER = 111 NAME = PAPER

DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/2 X 11 5@ SHFETS
ITEM NUMBER = 222 NAME = PEN

DESGCRIPTION OF THE ITEM @ BLUE INK RaLL POINT MEDIUM INK

STOP LINE 90
#

Line 30 opens the file:

- again, it is file unit #1

- it names ITEM/DAT as the file to be opened (the file
that was created above)

- it sets the MODE to R since we are reading data from the
file

- it sets the TYPE to S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NOS$, the second to NAMES$, and the
third to DESS.

Line 50 checks to see if you have reached the end of the file
yet. If you have, it jumps to line 90 where the file is closed.

Line 80 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".

The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

Radie fhaek

PAGE 4 - 18

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80®

s ot
VAT A)

named ITEM/DAT.

i3 REM ##% DEMO OF ADDING TO A SEQUENTIAL FILE #%%

20 REM

3@ OPEN #1s "ITEM/DAT": MODE=Es TYPE=H

4B PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®

5@ INPUT NO%s NAME#s DEG®

4B PRINT #1355 NO%s NaME$®: DEGS

78 PRINT "IS THERE ANOTHER ITEM (Y/N)7"
8@ INPUT ANSWERS

9@ IF ANSWER$ <> "N" THEN 4@ ELSE CLOBE #1
#+RUN
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 333

7 TYPEWRITER

7 TaN ELECTRIC PORTABLE SELECTRIC
I8 THERE ANOTHER ITEM (Y/N)7

7N

STOP LINE 9@

Updating the File

As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps you need to follow:

1. Open the file you want to update (file #1) with OPEN.

2. Open a second file with OPEN to write your updated
records to (file #2).

3. Read in a data record with INPUT # from file #1.

4. Use EOF to see if you have reached the end of file #1.

5. Use PRINT # to print the updated record to file #2.

6. Repeat steps 3, 4, and 5 until you reach the end of
file #1, and then

7. Close file #1 with CLOSE.

8. Kill file #1.

9. Close file #2 with CLOSE.

Here is a sample program which updates a sequential access file
using these nine steps:

1@ REM ##% DEMO OF UPDATING A SBEQUENTIAL FILE *%x
20 REM

30 OPEN #1s "ITEM/DAT"s MODE=Rs TYPE=G

4@ OPEN #2s "NEWITEM/DAT"s MODE=Ws TYPE=S

5@ INPUT #135 NO%s NAME%s DES$

6B IF EOF(#1) = —1 THEN 1&6@
789 PRINT ¢ PRINT "ITEM NUMBER = "3:NO%$s "NAME = "3$NAMES$
®
Ragie fhaek

PAGE 4 - 19

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

QE@Q%%L‘@%i}

8@ PRINT "DESCRIPTION OF THE ITEM : *;DES%$

@ PRINT @ PRINT "DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)";3
100 INPUT ANSWER$

110 IF ANSWER$ = "N" THEN 140

120 PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"
130 INPUT NO%$s NAME%: DES®

140 PRINT #2235 NO$s NAME$s DESS

158 GOTO 50

160 CLOSE #1

170 KILL "ITEM/DAT®"

1800 CLOSE #Z

ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM @ LEGAL FAD 8 1/2 X 11 50 SHEETS

DO YO WANT TO CHANGE THIS INFORMATION (Y/N)? N

ITTEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BaLL POINT MEDIUM INK

DO OYOU WANT TO CHANGE THIS INFORMATION (Y/N)7 Y
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM"

7 FEN
7 BLACK INK BALL POINT FINE LINE

ITEM NUMBER = 333 MAME = TYPEWRITER
DESCRIPTION OF THE ITEM @ TAN ELECTRIC PORTABLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

Line 30 opens the file to be updated:

- it references the file as file #1

- it names ITEM/DAT as the file to be opened

- it sets the MODE to R, since we will be reading data
records from the file

- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2

- it names this new file "NEWITEM/DAT"

- it sets the MODE to W, since we will be writing the
updated data records to this file

- it sets the TYPE to S

Radio fhaek

PAGE 4 - 20

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™
Line 50 INPUTs (reads) one data record from file #1.

Line 60 checks to see if we have reached the end of file #1. If
so, it sends program control to lines 160-180 where the two
files are closed.

Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out~of ~date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

Radie fhaek

PAGE 4 - 21

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™ -

SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT # with PRINT
USING # and INPUT # with INPUT USING #.

Sample programs:

1B REM ##% DEMO OF FORMATTED OUTPUT TO A SEQUENTIAL FILE ##x%
2@ REM

30 OPEN #1s "ITEM/DAT"s MODE=W: TYPE=S

4@ PRINT "INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM®
5@ INPUT NO%s NAME$s DES$

&H@ PRINT USING #13 20@: NO%s NAMESs DES$

7@ PRINT "IS THERE ANOTHER ITEM (Y/N)?2"

80 INPUT ANSWERS

9B IF ANSWERS$ < "N" THEN 40 ELSE CLOSE #1
2@ 5 O CRREE RS R
#RUN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 111

7 PAPER

7 LEGAL PAD 8 1/2 X 11 30 SHEETS

I8 THERE ANOTHER ITEM (Y/N)7?

7Y

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 22z

7 PEN

7 BLUE INK BALL POINT MEDIUM POINT

I8 THERE ANOTHER ITEM (Y/N)7

7 N

Radie Shaek

PAGE 4 - 22

MODEL I/III COMPILER BASIC BUILDING DATA FILES

1@

=@

30

4@

50

&0

70

a0

9@

1636
FHUN

TRS-80™-

(*\
. SEOMT

REM #x¥% DEMO OF FORMATTED INMPUT FROM A SEQUENTIAL FILE =%
REM
OFEN #1s "ITEM/DAT": MODE=Rs TYPE=S

IMPUT USING #1535 106 NO$: MNAMES: DESHS

IF EQF(#1) <> @ THEN 96

PRINMT @ PRINT "ITEM NUMBER = "3NO$s "MaME = " 3ipNaMES
FPRINT "DESCRIPTION OF THE ITEM @ "3 DES%

GOTO 4@

CLOSE #1

$ AR R

ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/

ITEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BalLL P

PAGE 4 - 23

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™ -

: e T
eﬁ:‘,:gi 5{2;} E\dk e

X

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures
as the stream input/output method, except replace PRINT # with
WRITE and INPUT # with READ.

Sample Programs:

1@ REM *¥¥ DEMO OF BINARY OQUTPUT TO A SEQUENTIAL FILE #%% 20 REM
30 OPEN #1s "SALES/DAT"s MODE=Ws TYPE=S
40 PRINT "INPUT (1) ITEM NO. (&) JAN SALES (3) FER SALES (4) MAR SALES
5@ INPUT NO%s JANs FEBs MAR
&0 WRITE #135 NOYXLs JANs FEBs MAR
70 PRINT "IS8 THERE ANOTHER ITEM (Y/N)"3
80 INPUT ANSWER$
9@ IF ANSWER® <> "N" THEN 4@ ELSE CLOSE #1
*RUN
INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
7 111
7 1000
7 2000
7 3000
I8 THERE ANOTHER ITEM (Y/N)7 Y
INPUT (1) ITEM NO. (2) JAN SALES (3) FEP SALES (4) MAR SALES
7222
7 150@
7 2000
7 2500
IS THERE ANOTHER ITEM (Y/N)7 N

STOP LINE 9@
*

Radie fhaek

PAGE 4 - 24

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

1@ REM *##% DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE #%#
2@ REM

3B OPEN #1s "S5ALES/DAT"s MODE=Rs TYPE=E

40 PRINT “"ITEM NO"s "JAN SALES"s "FEB SALES"s "MAR SALES"

5@ READ #13 NOYXs JANs FEBs MAR

60 IF EOF(H#1) <X @ THEN 90

7% PRINT NO%Zs JANs FEBs MAR

8@ GOTO 56
@ CLOSE #1
#RUN
ITEM NO JAN SALES FEB SaALES MAR SALES
111 1006 pedril il 3000
S 1500 2060 2500

STOP LINE 90
E-3

Radio fhaek

PAGE 4 - 25

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80

BUILDING A DIRECT ACCESS FILE

As with sequential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method first.

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/OUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the OPEN
statement

— you must assign each record a record number

Radie fhaek

PAGE 4 - 26

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

/ DPIRECT feock

These are the procedures to use:

1. Open the disk file with OPEN.

2. Print a data record to the disk file with PRINT USING
#, specifying its record number.

3. Repeat step 2 until you your program has output all
records desired to the disk file, and

4, Close the file with CLOSE.

Here is a sample program following these procedures:

13 REM ¥¥% DEMO OF FORMATTED OUTRUT TO A DIRECT FILE #%%
28 REM

3@ OPEN #1s "LIST/DAT": MODE=Ws TYPE=D: LENGTH=32

400 X =1

5@ PRINT @ INMPUT PROMPT="LAGT NaAME 7"3 LMAME®$

532 INPUT PROMPT="FIRST NAME 7"35 FNa&aMEs

54 INPUT PROMPT="ADDRESS 7"3 ADDS$

7@ OPRINT USING #1s KEY=X35 11@0s LNAME$: FNaMES: ADDS

8@ INPUT PROMPT="I& THERE ANOTHER ADDRESE (Y/N) 73 ANSWERS

180 ITF ANSWERS = "N" THEN CLOBE #1 ELSE X = X + 1 & GOTO 5@
110 5 JfeddddEdEE RS RS SR
#FUN

LAST NAME 7HARRIGSON

FIRST NaMiE 7PATRICIA

ADDRESS 71513 NORTH MOCKINGEIRD LANE
158 THERE ANOTHER ADDRESS (Y/M) 7Y

LAST NAME 7JOHNSON

FIRST NAME 7GEORGE

ADDRESS 71811 SOUTH HAMPTON

IS5 THERE ANOTHER ADDRESS (Y/N) 7N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. 1In this program, each
record will be divided into three fields. The < character marks
the beginning of each field:

the first field has 10 characters:

the second, 7;

the third, 15.
for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

Radie fhaek

PAGE 4 - 27

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRSE-80

/ EE?%ﬁEiﬁ%
- it references the file as file unit #1
- it names the file "LIST/DAT"
- it sets the MODE to W (write)
- it sets the TYPE to D (direct)
- it sets the LENGTH (record length) to 32 characters in
each record.

Line 70 outputs a record to the disk file using the format set
on line 110. Notice that in direct access, this PRINT USING #
statement must specify a KEY (record number) for each record.

Line 100:

- closes the file if the operator does not want to output
any more records, or

- increments the record number by 1 and sends the program
back to print the next record to the disk file.

Reading the File (Input from the File)

s m— — T D S — - — D SIS =D e R D D D e W N D SN D IS N0 R WD GGD e D <

To read every record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, you must specify the record length
- in the INPUT USING # statement, you must specify the KEY
(record number) you want to input from the file

These are the procedures:

1. Open the disk file with OPEN, specifying the record
length.

2. Read in a data record with PRINT USING #, specifying
the record number.

3. Use EOF to see if you have reached the end of the file
yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a sample program following these procedures:

§m REM #¥#4% DEMO OF PDRMATTED INPUT FROM & DIRECT FILE ##%
33 g%gm #1le "LIST/DAT" s MODE=Rs TYPE=D: LENGTH=3Z
zg ?N;U# USTNG #1: KEY=Xs 130s LNAME$s FNAME$s ADDS$
&5 IF EOFGHLY < @ THEN 106
Radie fhaek

PAGE 4 - 28

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ (S y——
3 e, 2 =
7@ PRINT : PRINT "RECORD #"3: X Diamer hem®ss)
80 PRINT LNAMES:"s " 3sFNAME®y s s ADDS

9@ X = X + 1 1 GOTO &@
100 CLOSE #1
30 3RS HBHREEE HE R R AR ER R RN R
*

RECORD # 1
HARRIGSON s PATRICI
1513 NORTH MOCK

RECORD # 2

JOHNSON s GEORGE

1811 SOUTH HAMP
Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
it references it as file unit #1
- it names it LIST/DAT
- it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record # X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAMES, FNAMES, and ADDS.

Line 65 checks to see if you have reached the end of the file
yet. If so, it jumps to line 100 where the file is closed.

Line 90 increments the record # by one and sends the program
back to input the next record from disk.

Updating and Adding to the File

—————— " — " ———— —— — s T S —————— _— ———s

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length.
2. By specifying the record number, you may then do one of
the following:
a. input the record from the disk file by
using INPUT USING #
b. delete the record from disk file with
DELETE #, or
c. output new data to the disk file, for

Radie Shaek

PAGE 4 - 29

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™.

{

I RELCT fecPSS)

o

that record number with PRINT USING #
3. Repeat step 2 until you have finished updating the
file, and then
4. Close the file with CLOSE.

Here is a sample program updating a direct access file:

}g ggm #¥% DEMO OF UPDATING A FORMATTED DIRECT FILE #¥%¥

3@ OPEN #1, "LIST/DAT"s MODE=Us TYPE=Ds LENGTH=3Z

4@ PRINT @ PRINT "<1) DISPLAY RECORD" & PRINT "(2) DELETE RECORD®
5@ PRINT " (3) ADD/CHANGEY : PRINT "(4) CLOSE FILE"

HO O INPUT PROMPT="SELECT ONE OF THE ARBOVE "3 &

70 INPUT PROMPT="RECORD NO (@ IF CLOSING FILE) 7"3 R

8@ ON & GOTO 110y 160, 20Bs 270

2@ REM
13& REM
11®% REM #%% (1) DISPLAY RECORD ROUTINE %%

12@ INPUT USING #1, KEY=Rj Z9@ LNAME®: FNAMES$y ADD$
13@ PRINT LNAME®:" s " 5FNAME$s sy s ADDS @ GOTO 4@
140 REM

1583 REM

1680 REM #%% () DELETE RECORD ROUTINE #%%

173 DELETE #1s KEY=R: GOTD 4@

180 REM

198 REM

200 REM ®##% (X)) ADD/CHAMGE RECORD ROUTINE #¥%
210 INPUT PROMPT="LAGT NAME 7"35 |L.NOMES$

22@ INPUT PROMPT="FIRST NAME 7"35 FNAMES$

2R@ INPUT PROMPT="ADDRESS 7"35 ADD%

248 PRINT USING #1s KEY=R3; 2980y LNAME$s FNAME$:s ADD$ © GOTO 406
250 REM

260 REM

270 REM ¥%% (4) CLOSE FILE #xx

28BE CLOSE #1

2@ 5 AR R R R

Here is a sample of what might happen when this program is RUN:

*#RUN

(1) DISPLAY RECORD
(2) DELETE RECORD
(F) ADD/CHANGE
(4) CLOSE FILE

Radie fhaek

PAGE 4 - 30

MODEL

I/III COMPILER BASIC

SEL

ECT ONE OF THE ABOVE 3

TRS-80™

BUILDING DATA FILES

P "
g g

{ DIRECT AccESS)

v

RECORD NO (@ IF CLLOSING FILE) 73
LAST NAME 7ALEXANDER
FIRST NAME 7MARIA
ADDRESS 73333 ELK GROVE

(1)
()
(3)
(4)

DISPLAY RECORD
DEL.ETE RECORD
ADD/ CHANGE
CLOSE FILE

SELECT ONE OF THE ABOVE i
RECORD NO (@ IF CLOSING FILE) 73
ALEXANDER sMARIA
3333 ELK GROVE

(1)
()
(33
{4)

DISPLAY RECORD
DELETE RECORD
ADD/ CHANGE
CLOSE FILE

SELECT ONE OF THE ABOVE 4
RECORD NO (@ IF CLOSING FILE) 7@

Line
build

Line

Line

Line
Routi

290 is the image line.
ing the file.

30 opens the file:

This is format which was used when

it references it as file #1

- it names it LIST/DAT

- it sets the MODE to U
- it sets the TYPE to D
- it sets the LENGTH to

70 asks the operator to

80 sends the program to
ne, Add/Change Routine,

the operator's choice.

(update)
(direct)
32 characters per record

input a record number (KEY)

the Display Routine, Delete
or to close the file, depending on

Line 120 inputs the record number the operator selected using

the £

ormat set in line 290.

Line 170 deletes the record number the operator selected.

Line 240 prints new data to the record number the operator

selec

Line

ted.

280 closes the file.

Radie fhaek

PAGE 4 - 31

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

/i RET FCcES S /
\

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING # with PRINT # and
INPUT USING # with INPUT #.

To determine the length of each record you must allot:
- one byte for each character of data
- one byte for each new field of data
- one byte preceeding each positive number

Sample programs:

1@ REM ##3% DEMO OF STREAM OUTPUT TO A DIRECT FILE ###
20 REM

30 OPEN #1s "NAME/DAT"s MODE=Ws TYPE=Ds LENGTH=8

4B X = 1

5@ PRINT & PRINT "FIRST INITIAL 7"

6@ FNAMES = INPUTS$(1)

70 PRINT "LAST NAME 7"

80 LNAME$ = INPUT$(5)

Q@ PRINT #1: KEY=X3 FNAME$s LNAME%$

120 INPUT PROMPT="1S5 THERE ANOTHER NAME (Y/N) 7"35 ANSWERS$

11@ IF ANSWER% = "N" THEN CLOSE #1 ELSE X = X + 1 & GOTO 50
#*#RUN

FIRST INITIAL 7M
LAST NAME 7WASHI
IS5 THERE ANOTHER NAME (Y/N) 7Y

FIRST INITIAL 7C
LAST NAME 7MILLE
I8 THERE ANOTHER NAME (Y/N) 7Y

FIRST INITIAL 7J

LAST NAME 75MITH

I8 THERE ANOTHER NAME (Y/N) 7N
STOP LINE 110

.x.

Radio fhaek

PAGE 4 - 32

MODEL I/III COMPILER BASIC

TRS-80™

[TYIREQT foc @5‘@}

{

BUILDING DATA FILES

1@ REM ¥%% DEMO OF STREAM INPUT FROM A DIRECT FILE %#%

2@ REM
3@ OPEN #1s "NAME/DAT"s TYPE=Ds LENGTH=8

40 X = 1

&5 INPUT #1s KEY=X3 FNAME$,
w2 @ THEN 120
78 PRINT & PRINT "RECORD #"3

&8 IF EOF(#1)

8@ PRINT FNAME$: . "
118 X = X + 1 : GOTO 65
126 CLOSE #1

*RUN

RECORD # 1
M. WASBHI

RECORD # 2
C. MILLE

RECORD # 3

J. SMITH

TREDOS ERROR 29 LINE 65
*

LNAMES

Radie fhaek

PAGE 4 - 33

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ —
< DIR

M

o T AC Cé‘f@g‘}
DIRECT ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, follow the procedures of
the formattted method replacing PRINT USING # with WRITE and
INPUT USING # with READ.

Determining the length of each record is a little more complex.
You should ajllot:

2 for each integer (integers are
whole numbers beteen =32768 and
32767)

3 -9 for each real number:
1 byte for the length byte
1 byte for the exponent byte ,
1 byte for each two signigicant~
digits

1 for the beginning length byte

See the Overview of this chapter for more information.

Sample programs:

18 REM *¥¥% DEMO OF BINARY OQUTPUT TO A DIRECT FILE #%%
2@ REM

3@ INTEGER

40 OPEN #1s "SALES/DAT"s MODE=Ws TYPE=Ds LENGTH=9

30 X=1

68 INPUT PROMPT
70 INPUT PROMPT
80 WRITE #1s KEY=X3 NOs JANs FEBs MAR

9@ PRINT "IS THERE ANOTHER ITEM (Y/N)";3
128 INPUT ANSWER%$
11@ IF ANSWER$ = "N" THEN CLOSE #1 ELSE X = X + 1 : GOTO &40

Radie fhaek

"ITEM NO. 7"35 NO @ INPUT PROMPT = "JAN SALES 7"
"FEB SALES 7"3 FEB @ INPUT PROMPT = "MAR SALES 7"3 MAR

PAGE 4 - 34

i JAN

MODEL I/III COMPILER BASIC

BUILDING DATA FILES

TRS-80™
(DIREST

#RUN

ITEM NO. 7111

JAN SALES 73000

FEB SALES 72433

MAR SALES 75543

IS5 THERE ANOTHER ITEM (Y/N)7 Y
ITEM NO. 7222

JAN SALES 79987

FEB SALES 78888

MAR BALES 77987

I8 THERE ANOTHER ITEM (Y/N)7 N
STOP LINE 118

*#

18 REM *#%% DEMO OF BINARY INPUT FROM A DIRECT FILE #%%
28 REM
30 INTEGER
40 OPEN #1s "SALES/DAT"s MODE=Rs TYPE=Ds LENGTH=9
38 X=1
6@ PRINT "ITEM NO."s "JAN SALES"s "FEB SALES"s "MAR SALES"
7@ READ #1s KEY=X3 NOs JANs FEBs MAR
80 IF EOF(#1) <> @ THEN 110 gor = - 1
9@ PRINT NOs JANs FEBs MAR
100 X = X + 1 @ GOTO 70
110 CLOSE #1
#RUN
° ITEM NO. JAN SALES FEB SALES MAR SALES
111 3000 2433 5543
222 987 88686 7987
®
Radio fhaek

PAGE 4 - 35

MODEL I/III COMPILER BASIC BUILDING DATA FILES
TRS-80™

BUILDING AN INDEXED ACCESS (ISAM) FILE

To build an indexed access file, you may use the same three
input/output methods that were shown with sequential and direct
access files: formatted, stream, and binary. We will only show
the formatted method in this chapter, but remember that the
other methods are available to you.

NMODES = M/
INDEXED ACCESS FILE i
USING FORMATTED INPUT/OUTPUT VA

Building the File

To build the file, use the same procedures that were shown in
building a formatted direct access file, except:

- In the OPEN statement, you must specify the maximum
number of characters you will use for each KEY.

-~ In the PRINT USING # statement, you must assign each
record a KEY rather than a record number. This key may be any
name you choose.

Here is a sample program:

Radie fhaek

PAGE 4 - 36

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™

i@ REM ®%% DEMO OF FORMATTED OUTPUT TO AN INDEXED FILE %%
=@ REM
30 OPEN #1s "LIST/DAT"s MODE=Ws TYPE=I: LENGTH=3Zsy KEY=3
4@ PRINT @ INPUT PROMPT="LAST NAME 7"35 LLNAMES
5@ INPUT PROMPT="FIRST NAME 7"3 FNAME$
&0 INPUT PROMPT="ADDRESS 735 ADD%
7@ PRINT "KEY 7"35: K$é=INPUT$(3)
8@ PRINT USING #1: KEY=K$35 110s LNAME$: FNAME$s ADDS$
@ INPUT PROMPT="I18S THERE ANOTHER ADDRESBS (Y/N) 7"3 ANSWERS
160 IF ANSWER$="N" THEN CLOSE #1 ELSE GOTO 4@
11@ s “HHddHEEEE T S

Line 110 is the image line. It formats the data output to each
record in three fields containing 10, 7, and 15 characters for a
total of 32 characters.

Line 30 opens the file:
it references it as file unit #1
- it names the file "LIST/DAT"
- it sets the MODE to W (write)
- it sets the TYPE to I (indexed)
- it sets the record LENGTH to 32
- it sets the length of each KEY to 3 characters

Line 70 asks the operator to specify a key name to use in
referencing the file.

Line 80 prints the record to disk file.

Line 100:
closes the file if the operator is finished or
goes back to print another record to the disk file.

Reading the File

To read every record in the file, follow the same procedures
that were shown in reading a formatted direct access file,

except:

- In the OPEN statement, you must specify the number of

characters in the KEY.
- In the INPUT USING # statement, you may leave out the key

name .
- You may use a special function named KEY$ to read the

name of the key for each record.

Radie fhaek

PAGE 4 - 37

MODEL I/III COMPILER BASIC BUILDING DATA FILES

TRS-80™ =
CHNDER) =
Sample program:
1@ REM ##% DEMO OF FORMATTED INPUT FROM AN INDEXED FILE ##%#

20 REM

38 OPEN #1s "LIST/DAT"s MODE=Rs TYPE=Is LENGTH=32s KEY=3
4B INPUT USING #135 200s LNAME$s FNAME$s ADD$

5@ IF EOF(#1) (> @ THEN 90

68 PRINT

7@ PRINT LNAME$3"s "3 FNAME®$sss ADD$

86 GOTO 40

8 CLOSE #1

200 5 <HRHHEHBHRCEEREHECHBRBEHEEHE RSN

Updating the File

e D D = e e D s @ e e

To update the file, you follow the same procedures as shown in
updating a formatted direct access file, except:

- In the OPEN statement, you must specify the number of
characters in the KEY.

= You must specify the name of the KEY in the INPUT USING
#, PRINT USING # and DELETE # statements.

Sample program:

1@ REM *#% DEMO OF UPDATING A FORMATTED INDEXED FILE #%%
28 REM

30 OPEN #1s "LIBT/DAT"s MODE=Us TYPE=Is LENGTH=3Zy KEY=3

4@ PRINT @ PRINT "(1) DISPLAY RECORD" : PRINT "(2) DELETE RECORD"
3@ PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE®

68 INPUT PROMPT="GELECT ONE OF THE ABOVE :"3; 8

78 INPUT PROMPT="KEY 7" iK%

8@ ON & GOTO 118 168, 200, 270

98 REM

1808 REM

11@ REM ##% (1) DISPLAY RECORD ROUTINE ##%%

12@ INPUT USING #1s KEY=K$3; 290: LNAME®%s FNAME$s ADD%

130 PRINT LNAME$3"s "3FNAME%sssADD% @ GOTO 40

14@ REM

150 REM

166 REM *¥#% () DELETE RECORD ROUTINE ###%
170 DELETE #1s KEY=K$: GOTO 4@

188 REM

Radie Shaek

PAGE 4 - 38

MODEL

I/III COMPILER BASIC

BUILDING DATA FILES

TRS-80™

198
=200
210

B
Jr g

230
240
250
260
278
280
290

REM
REM

®#¥% (3) ADD/CHANGE RECORD ROUTINE #%%

INPUT PROMPT="LAST NAME 7"5 LNAME®
INPUT PROMPT="FIRST NAME 7"35 FNAMES$
INPUT PROMPT="ADDRESS 7"3 ADD%
PRINT USING #1s KEY=K$3; Z29@s LNAME®s

REM
REM
REM
CLOGE #1

*¥#% (4) CLOSE FILE #¥%

s <HEHHHHHEE CHHEBHE R R

FNAMES

(1 NDEX)

ADD%

8
®

GOTO 40

Badio fhaelk

PAGE 4 - 39

TRS-80™

hhhdhhdhdhhhhhhhhhhhhhhhhhhhhhhhhdhhkhhhhhhhhk

Chapter 5

* *
* %
* %
* SEGMENTING PROGRAMS *
%* *
* *

hhhhhkhhhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhik

Radie fhaek

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

WHY SEGMENT PROGRAMS

The BASIC Compiler offers two ways of segmenting long and
complicated programs into shorter, more manageable programs:

1. Subprograms are high powered subroutines which act on
data stored under different variable names. Like subroutines,
they are called from the main program, executed, and return back
to the main program.¥*

Subprograms are helpful if you are performing the same
complicated operations on different variables repeatedly in
different parts of your program. For example, a subprogram that
draws graphs could be called many times from the program. Each
time, it would be sent different data.

2. Program chaining is a method of breaking a very large
program into smaller programs which will each load into memory
and execute separately. This is a solution when a program
requires too much memory to execute.

* A subprogram may also be called from another subprogram.
However, they may not be recursive (that is, a subprogram may
not call itself).

OUTLINE FOR CHAPTER 5
SEGMENTING PROGRAMS
I. How to Build a Subprogram
A. How to Pass All Types of Data
B. Storing Subprograms
C. Calling Assembly Language Programs
II. How to Chain Programs

III. Subprograms VS. Program Chains

Radie fhaek

PAGE 5 - 1

MODEL I/III CQMPILER BASIC SEGMENTING PROGRAMS
TRS-80

HOW TO BUILD A SUBPROGRAM

All subprograms must be called from the main program with the
CALL statement. Normally, you will want the CALL statement to
"pass" data to the subprogram. For example:

CALL "ANNUAL"; F

calls a subprogram named ANNUAL and passes the data stored in F
to the subprogram.

The subprogram must begin with a SUB statement which identifies
it. If the subprogram is being passed data, this statement must
contain a variable name which can temporarily store the data.
For example:

SUB "ANNUAL"; X

begins the ANNUAL subprogram. The data in F is passed to the
subprogram, which temporarily stores it as X. Here is the
entire subprogram:

100 SUB "ANNUAL"; X
110 X =X * 52
120 SUBEND

Notice that a subprogram must always end with a SUBEND
statement. The main program must always end with an END
statement. Here is the main program and the subprogram:

5 X =5
10 F = 100
20 CALL "ANNUAL"; F
30 PRINT X, F
40 END
100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

Here, the main program passes the value of 100, which is stored
in F, to the subprogram. The subprogram temporarily stores 100
in X, performs its operation on X and passes the resulting value
of 5200 back to the variable F in the main program. When
instructed to PRINT X and F, the main program prints:

5 5200

Notice that the subprogram's variable X had no effect on the

Radie fhaelk

PAGE 5 - 2

MODEL I/III COMPILER BASIC
TRS-80™

SEGMENTING PROGRAMS

main programs's variable X.
program variables are stored separately.

This is because subprogram and main

The subprogram only

temporarily stores and acts on the value which is passed to it

-- F.

Main Program

Sub Program

S

datd

CALL &

%oz,

END -

SuUB

SUB END

The same subprogram may be called repeatedly in the program,

being passed different values each time.

10 F =100 : G = 52.25 : E = 26.50
20 CALL "ANNUAL"; F
30 CALL "ANNUAL"; G
40 CALL "ANNUAL"; E
50 PRINT F, G, E
60 END
100 SUB "ANNUAL"; X
110 X =X * 52
120 SUBEND

When executed, this program prints:

5200 2717

For example:

1378

One CALL statement can pass several different variables to a

subprogram. For example:

10 MONTHS = "JANUARY"

30 DAY% = 5

50 CALL "CAL"; MONTHS, DAY%

60 PRINT MONTHS; DAY$%
70 END

90 SUB "CAL"; AS, B%
100 AS$ = SEGS(AS, 1, 3)
110 B% = B% + 7

Radie fhaek

PAGE 5 - 3

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

120 SUBEND

Notice that the variable types in the SUB statement (line 90)
match the variables passed by the CALL statement (line 50). 1In
this particular program, CALL and SUB list the string variable
first and the integer variable second.

When executed, the program prints:
JAN 12

Subprograms may be sent the contents of an entire array. For
example:

CALL "GRAPH"; A()

calls the subprogram GRAPH and passes the entire contents of
array A to the subprogram.

SUB "GRAPH"; X()

begins the subprogram GRAPH. The entire contents of array A are
temporarily stored in the subprogram as array X.

Here is a program which passes array data to a subprogram:

5 DIM A(3)
10 DATA 5, 10, 15
20 READ A(l), A(2), A(3)
30 CALL "GRAPH"; A(), "GRAPH"
40 END
50 SUB "GRAPH"; X(), ¥YS$
60 PRINT Y$
70 FOR I = 1 TO 3
75 READ %ZS$: PRINT ZS$;
80 PRINT STRINGS(X(I), "X"); X(I)
90 NEXT I
95 DATA "MON", "TUES", "WED"
100 SUBEND

Notice how the subprogram GRAPH beginning in line 50 has its own
DATA statement (line 95). This cannot be read by the main
program. Nor can the main program's DATA statement (line 5) be
read by the subprogram. This is because before being executed,
the main program and the subprogram are compiled separately.

You may pass the entire contents of a two dimension array like
this:

CALL "TWO"; A(,)

Radie fhaek

PAGE 5 - 4

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

The subprogram needs a two dimensional array variable name to
accept the contents of array A, such as:

SUB "TWO": X(,)

HOW TO PASS ALL TYPES OF DATA

The table on the next page shows how to match up the data in the

CALL and SUB statement. The first column shows the type of data
you may pass from the main program in a CALL statement. The

second column shows the accompanying type of variable which must
be in the SUB statement of the subprogram to receive this data.

DATA PASSED FROM THE VARIABLE RECEIVER IN
MAIN PROGRAM SUBPROGRAM

numeric expression numeric variable
CALL "SUBPROG"; 14 / 3 : ‘ SUB "SUBPROG"; S
CALL "SUBPROG": 14 * 3 ‘ SUB "SUBPROG"; S%

numeric variable contents
CALL "SUBPROG"; M
CALL "SUBPROG"; M%

string constant contents
CALL "SUBPROG": "EXAMPLE"

String variable
CALL "SUBPROG"; M$

_entire one-dimensional
numeric array contents
CALL "SUBPROG"; M()
CALL "SUBPROG"; M%()

entire two-dimensional
numeric array contents
CALL "SUBPROG"; M(,)
CALL "SUBPROG"; M%(,)

contents of numeric
array element .

 CALL "SUBPROG"; M(l) -
CALL "SUBPROG" M(1,1)

numeric variable
SUB "SUBPROG"; S
SUB "SUBPROG": S%

string variable
SUB "SUBPROG"; S$

string variable
SUB "SUBPROG"; S$

empty one-dimensional
numeric array

SUB "SUBPROG"; S()
SUB "SUBPROG"; S%()

empty two dimensional
numeric array

SUB "SUBPROG"; S(,)
SUB "SUBPROG"; M$(,

numeric subscrlpted

- varlable

 SUB "SUBPROG"; 5
's‘r "SUBPROG";

Radlo J‘haek

5 -5

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

T™TRS-80™
CALL “"SU‘BPROG“ : M3l 1 SUB "SU BPROG"; S%
CALL "SUBPROG"; M%(1,1) | SUB "SUBPROG" S%
entire one-dimensional empty one- dlmen31onal
string array contents string array
CALL "SUBPROG"; MS() SUB "SUBPROG"; SS$()
entire two-dimensional - - empty two—dlmen31onal
string array contents - strlng array L
CALL "SUBPROG"; MS$S(,) . ;kaUB "SUBPROG"; SS$(,?)k=
contents of one string string subscripted
array element variable
CALL "SUBPROG"; M$(1l) SUB "SUBPROG"; S$
CALL "SUBPROG"; MS$(1l,1) SUB "SUBPROG"; S$
®
Radie Shaek

PAGE 5 - 6

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

STORING SUBPROGRAMS

Subprograms may either be SAVEd or COMPILEd as part of the main
program or as a separate program. If they are stored
separately, they must be loaded along with the main program.

If the subprogram and main program were both SAVEd separately as

BASIC prr yrams, use the APPEND command to load the subprogram.
For exam .e:

OLD MAINPRG/BAS
Loads the main BASIC program, and
APPEND SUBPRG/BAS

Appends the subprogram to the main program.

CALLING ASSEMBLY LANGUAGE PROGRAMS

RSBASIC provides a method for calling an external assembled
object code program from your BASIC program. To do this, use
these guidelines:

When writing the assembly language program ...

1. We suggest that you calculate the originating address
for your assembly language program as follows:

TRSDOS TOP memory address¥*
- number of bytes in your program

—— ——————— T —— ——— 7 — T ——— T —— s ‘o Yo s

originating address

* Your TRSDOS TOP memory address depends on the size of your
system, which version of TRSDOS you have, and whether you will
load high overlay programs such as DEBUG and SETCOM. The top
addresses used in the following sample program will only work
on systems with at least 48K of memory.

2. If the subprogram will receive parameters passed to it

by the main BASIC program, refer to the section on "Parameter
Passing" of Assembly Language Subprograms in the Programmers
Information Section. The sample program on the following pages
demonstrates an application of how this is done beginning on
line 220 of the INITIATE, TRANSMIT, and RECEIVE routines.

Radie Shaek

PAGE 5 - 7

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

When writing the BASIC program...

1. Use the EXT statement to define this address and to
name the subprogram. For example:

EXT INIT = &0C000

assigns the name INIT to the first subprogram and defines its
originating address as hex C000.

The EXT statement should be at the beginning of your program.

2. Use the CALL statement to call the assembled program in
the same manner that CALL is used to call a BASIC subprogram.
For example:

CALL "INIT"; I
calls the subprogram named INIT and passes the parameter (data)
stored in I.

When executing the program ...

1. Load your assembled subprogram before RSBASIC using the
TRSDOS "LOAD" command. For example:

LOAD EX/OBJ:1l
loads the assembled program EX/OBJ from the diskette in drive 1.
2. After loading your assembled subprogram, load RSBASIC
specifying the top memory address it may use. This address
should be the originating address of your assembled subprogram
minus one. For example, if your originating address is C000,

you should load RSBASIC with the T=BFFF option. (See Using the
BASIC Compiler, Chapter 1 for the correct syntax.)

Radie fhaek

PAGE 5 - 8

19 REM USIHG THE MODEL III AS A TERMINAL

20 REM DEMOWSTRATION OF A CRLL TO AM EXTERMAL ASSEMBLER
30 REM SUBROUTIME.

48 REM

50 FEM BEFORE RUWMIMWG THIS PROGRAM ., LOAD THE ’TERM’

68 REM PROGRAM INTO MEMORY. BRSIC TOP OF MEMORY MUST

78 REM BE SET TO HEX ADDR BFFF, E.G.. START BABIC THIS
88 REM WAY:' RSBASIC Te=BFFF

98 REM THE ASSEMBLER ROUTIME IMITIATE RS5232-C,

188
118
111
139
131
132
133
134
140
159
151
15
153
159
168
163
176
120

REM THEW TRAMBSMIT THE CHAR AMD RECEIVE THE CHRAR.
REM

IMTEGER R, 1

EXT IMIT = &RACAOE:EXT RSTK = 8DBB0: EXT RERCY = LOEOBS
PRIMT "IMPUT THE BAUD RATE CODE"

REM IMCODE SHOULD BE IWTEGER

INPUT A

I=sIHTOA

CALL "IMIT":I

C% = ITHKEY#®

IF C& = "" THEW 1535

PRINT C#

CALL "RSTH"iC$

PRINT C#

CALL "RSRCY",D%

PRIMT "RECEIVE CHRARACTER =";D®

GOTO 150
EHD
ORG BCoBeH
3 = 02029 sy 122 0502 I oo 9 oD G K9 iR T R0 e e o829 G 425 G By g GRS Cage e 65] i
i IMITIATE ROUTIWE
i)
INIT! EGU %
Lo HL , PDRADR
LD CHLY.E
INC HL
LD CHLY, D
J...- o e L) o) ey eogn s e el 0 g ety
} INITIATE THE BAUD RATE & W/NW SWITCH
}
LD HL.,RET® JBAYE RETURM RLODR
PUSH HL }
LD HL, (PORRADR 5 ; :
JP CHL sCALL DECODE ROUTINE

Radio fhask

PAGE 5 - 9

0e2e6 L ws o il e
Be27e RETURN FROM DECODING ROUTINE =
Bazee A= RETURN CODE B -> MORE ITEM LIST

Be2Se NOT 8 =2 NO MORE LEFT

BE32EB B= PARM TYPE 8 ~=> INTEGER

08318 i -> RERL

08328 2 ~» BTRING

BA336 DE = ARGUMENT RDDR

28348

PB356 RETA: LD A.8

PBIED cP B JIF INTEGER

8a37ve JP HZ, ERROR JNOT INTEGER
pa3e8 INC DE

80350 Lo R, (DE? JGET M8B OF IMTEGER
P84G3 cP %})

@410 JP HZ, ERROR Y JCOBE > 15

PB426 DEC DE JGET CODE

Bo436 LD A, (DE?>

pR44a LD B.A JSAYE TO B

BB4ASD LD DE., 16 JLET DE= 18

PB460 LD HL.8® JIHIT HL = B
PR47E OrR A JOR FOR 2 FLAG
PB4RG JR £, OVER JIF CODE = @
PB458 KOZ: DEC B 1B RS COUNTER
pRsee JR Z,0vR1 s

pes1e ROD HL,DE]

15 bl 4] JR 02)

BRI3a OVRY ¢ RDD HL., DE 3

PB548 OVER: RDD AL ;A= CODER 16)4CODE
% bl LD C4IFBHY, A i

o a1) LD R, 8 JSET NO WRIT SWITCH
PaSs7e LD C41FAH Y, R 3

BBnEe CALL RSINIT JCALL FOR R8232-C INITIATE
PAS38 EFT: RET

BIBELIA o e om0 0 0 00 0 0 0 e 5 s 1 it 50 5 e 5 5 s i S 50 5 s S 59 59 20 5 40 2 529 5 s 0
Pas1e DEFINE ROUTINE

Boezd

BB&3E PDRADR: DEFW B

Pec4d RSIMIT EQU S8

PB6eTE MSGL DEFM ‘CODE 1€ MOT R INTEZER’

PREEHD DEFB BDH

BASTA MSL2 DEFM ‘CODE CGREATER THAW 15°

RB6BA DEFB BoH

BR6368 VYOLINE EGi) B38

QP ZIRD 3 o ot s ot i e o o 0 e i i 5 i e 8 s o e
PATLE ERROR ROUTINE

PB7ZD

AB738 ERROR EGU %

BR74eG LD HL., M8G1

BB TURM CaLL YDLINE

1% g 1) <R EFT

Pav78 ERRORL: LD HL , MSG2

PB7E0 JR TURM

89790 END INIT

PAGE 5 - 10

ea169 ORG @Deo6H

BP110 }=—cmmmmomom— o b e 9 29 e 8 e o 9 e
BBLza TRAMSMIT ROUTIME

BE1L36

PRl 4 RETH: .D HL. . PORADR 3

BRI 5E LD CHILY, E i

<] THC HL

BRI sa L.D CHL»D

QAR DI 1 oo o oo o o e s s o e 0 o s i 50 e
ea2ee TQHHSMTT THE CHAR TO RS232-C IMTERFACE
@a2ia

BREee LD HL..RET1 J

BB233 PUSH HL. i

aB24e LD HL., ¢ PDRADR > i

BB2356 JP CHL Y JCALL PDR

U ENE] 3 om0 o o ot 5 i 0 s 8
QEB27E RETLIRN FROM THE DECODINWG ROUTIME

@R2ee

256 RETL: D RA.2 i IF STRIMG?

BA3AA Cp B

PeR1G JR MZ ERROR 1IF MOT

GIBIBEMD 5 oo rom o oo oo con o 7 s o 5 e o o o i o 0 s o e e i o o o e
BASRE DE = nTEIHF DOPE

8340

BOISH LD A.LDES JADDR OF STRIMG
BAICEH LD L.A

Bea3PE IWNC DE sHL =» RUODR OF STRIMG
A0 LD H,“DE > i

bl LD H.A i

20408 L.D A CHL 2 iR = STRIMG LENGTH
PRas 1o CP 2 i IF LENGTH »2
Ba4z@ SR MC, ERROR] :

pad36 TN HL. JGET STRIMG ITSELF
BR446 LD RoCHL i

ABO4ASE CRLL RETHL i

AR4EE EFT: RET

PA4PA = maone o i i i e et st e s
BR4sa DEFTME ROUTIME

BRa49e |

aa5a6 PDRADR: DEFW L%

pASIE RETKI: EQU 83

A28 YDLLIME: EQIJ 539

PRSI0 MSE] DEFM ‘ERROR FOR MOT A STRIMG

BAS4e DEFR ADH

PASHE MS02 DEFM ‘ERROR FOR LEMGTH OWER 1°

PATEE DEFR GoH

BT TE oo s o o o s 2 e e e 2 2 s e e 5 e e s e
BAZEG ERROR HHHDLIHP ROUTIME

aa39a

ABsE6 ERROR EGL %

Rasia Lb HL, MSGE1

Bac2t BACK: CALL YOLIME

paGE3a JR EFT

8640 ERRORI EQU %

BASSE LD HL , MSG2

BBEED JR BRCHK,

Bes76 END RETH

PAGE 5 - 11

06166 ORG PEGBBH

B9118) === e o -

08126 RECEIVE ROUTINE

8138

PB146 RSRCY: EBU $

PB156 LD HL , PORADR

861606 LD CHL,E

8170 ING HiL.

BeLed LD (HLY,D

DB L O ovmmcro o o o o 1 o om0 o o s 0 50 2 o 58 5
@@E?g j RECEIVE R CHAR FROM RE232-C INTERFHPE

Bz J

BB226 LD HL,RETZ ;SRAVE RETURM ADDR
80238 PUSH HL !

PB240 LD HL..{ PDRRADR >

PB230 JP (HL) JCALL PDR

DEBED 5 oo om oom i o s co 0 150 o ot o 9 o o o 0 0 5 o o e
BB276 RETURN FRDM DECODING CRLL

@289

pR298 RETZ: LD A.2 JIF IT 18 STRIMGT
pB30a CP B i

e318 JR MZ ., ERROR JIF MWOT

BAZ2H LD R,CDE> } i
BB339 LD L.H iLH => FADDR OF STRING
PA340 TMC DE

Slnlek sl LD A.CDE

GBR3E6 LD H,R)

pa3?H LD CBUFF 3, ML IBAYE INTO BUFFER
B3B8 CALL RERCYL sCALL RECEIVE ROUTIME
ge398 LD A, 1 ;

90420 Le HL. . < BUEF 2 JHL = ADDR

Ba41e LD CHL YA JGET LEMGTH =
PRa425 IMC HL. 3

BR436 LD A."41E8H > JGET RECEIVE CHAR
PO446 LD CHL DA JPUT IMTO BUFER
pR4ASE EFT: RET

DAGEE 5 om0 om rom coneow o 010 s o v o s g om0 0 8 581 s s 0 8 5 52 0 0 20 15 1 s 2 2 39 15 s
PB4avE DEFIME ROUTINE

pa4B8a

P9458 RERCY] EQL 89

Pe39e YOLIME EGU 533

o@E518 PDRADR DEFM @

Bases BUFF DEFIW B

BRSHE MSE1 DEFHM ‘RECEIVE MOT A STRING’

AEE4D DEFB A0H

DD TTE 3 oo s o o o e s e st i o 1t
POTED ERRDR HMHELIHV ROUTIHE

GBS7H s

G538 ERROIR EQU &

a520 LD ML, M8GE1

@acon CALL YDLINE

B9610 JR EFT

o laleydn) END RERCY

PAGE 5 - 12

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

D)

TRS-80

HOW TO CHAIN PROGRAMS

— s s s s s o — T ———— —

The CHAIN statement chains programs. For example:
CHAIN "PROG2/BAS"

erases the program presently in memory, loads PROG2/BAS, and
executes 1it.

CHAIN "DRILL:2"

erases the program in memory and loads and executes DRILL from
the disk in drive 2.

This is how program chaining could be used:

10 PRINT "WHICH DRILLS DO YOU WANT TO TRY"
20 PRINT "(1)ADDITION (2)SUBTRACTION (3)MULTIPLICATION"
30 INPUT X
40 ON X GOTO 100, 200, 300
100 CHAIN "ADD/CMP"
200 CHAIN "SUBTR/CMP"
300 CHAIN "MULT/CMP"

As with subprograms, you may pass data to the chained program.
This is done with the COM statement. COM must be the first line
in both the originating program and the chained program. For
example, this could be the originating program:

10 COM AS

20 PRINT "TYPE YOUR NAME"
30 INPUT AS

40

50

60

70 CHAIN "TWO/BAS"

and the chained program could begin like this:

10 CoM AS

20 PRINT "HELLO"; AS
30 PRINT "THESE ARE THE FIRST 5 QUESTIONS"

Because of the COM AS$ statement, the value of AS is retained
during the chaining process.

For more information on COM, see the Keywords Chapter.

Radie fhaek

PAGE 5 - 13

MODEL I/III COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

SUBPROGRAMS VS. PROGRAM CHAINS

> — " — - — D " ——— — — - — - _— — —— ——

Subprograms are a good way to perform complicated routines on
data repeatedly in the program, each time returning back to the
main program. In chaining, it is more difficult to return back
to the original program, since the main program is erased from
memory when a program is chained.

Program chaining does offer a convenient way to write a program
which requires more memory than there is available. The amount
of memory you need to run a series of program chains is only the
amount required to run the longest program in the series.

Subprograms do not have this memory saving capability. All
subprograms must be loaded along with the main program prior to
executing the program. There must be enough memory for the main
program plus all the subprograms which will be called.

Radie fhaek

PAGE 5 - 14

TRS-80™

khkkhkkhkhkhhhhhkhhhhhhhhhhkhhhhhhhdhhhhhhhhdhkik

* *
* Chapter 6 *
* *
* BASIC KEYWORDS *
* *
* *

hhkhhkhkhkhkhkhhkkhhkhhkhkhkhhhhhhhkhdhhkhhhhkhkhhkitk

Radie fhaek

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INTRODUCTION

The RSBASIC programming language is made up of keywords. These

keywords, with their parameters, instruct the Computer to
perform certain operations.

This chapter contains entries for each keyword, organized
alphabetically. The first two pages show the meaning of the
format for each keyword entry. A brief introduction to BASIC's
two types of keywords -- statements and functions -- is on the
next pages.

OUTLINE FOR CHAPTER 6
BASIC KEYWORDS

I. Format for the Keyword Entries
II. Statements
ITI. Functions
Iv. Alphabetical Entries for each Keyword
®
Radie fhaek

PAGE 6 - 1

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

FORMAT FOR THE KEYWORD ENTRIES

A sample keyword entry is on the next page. This is the meaning
of its format:

1. The first line is the keyword itself. The second line
briefly describes what it does.

2. All keywords are defined as statements or functions:

a. a STATEMENT is a line in a program. It, along with its
parameters, tells the Computer to do some operation when that
particular line in the program is executed.

b. a FUNCTION is a subroutine. It must be a part of a
statement.

3. The information in the gray box is the syntax for the
keyword. The first line shows the format to use in typing the
keyword. This format line always contains:

a. the keyword itself - this must by typed exactly as it
appears.
And may also contain:

b. parameters.
The parameters are defined on the next lines. A parameter
enclosed in single quotes means that you must specify its value.
Parameters may only be omitted if the syntax states that this is
allowed.

In the syntax illustrated on the next page, LEN is the keyword
and 'string' is the parameter. The second line gives the
meaning of 'string'. Since 'string' is enclosed in single
quotes, you must specify its value. The syntax does not state
that 'string' may be omitted. Therefore 'string' is required.

4, This explains how to use the keyword.

5. These examples illustrate how the keyword might be used. All
of these examples must be a line in the program to be executed.

6. Each entry contains a sample program using the keyword. Some
of the longer sample programs illustrate a sample run of the
program.

Radie fhaek

PAGE 6 - 2

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

LEN
Get Length of String

LEN returns the current number of characters in the

"string’.

Examples

PRINT LEN("MARY")
Prints 4.

PRINT LEN("MARY HAD A")
Prints 10.

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES$ in X.

Sample Program

1@@ PRINT "INPUT WORDS OR A SHORT SENTENCE®

11@ INPUT &%

1280 PRINT "YOUR SENTENCE HaS": LENM{&$):"CHARACTERS”
T3@ GOTO 1@

Radie fhaek

PAGE 6 - 3

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

STATEMENTS

A program is made up of lines; each containing one or more
statements. A statement instructs the computer to do some
operation when that particular line is executed. It may only be
executed when the program is run. For example:

100 STOP

Tells the Computer to stop executing the program when it reaches
line 100.

Statements often include parameters. For example:
100 GOTO 500

Tells the Computer, when it reaches line 100, to execute the
statement on line 500 next.

BASIC statements perform the operations listed below:

VARIABLE DEFINITION

If none of the statements below are used, BASIC will treat all
variables without a type declaration tag as real numbers, and no
arrays will be allowed:

INTEGER - defines variables as integer
STRING - defines variables as string and defines the length

of the string

REAL - defines variables as real

DIM - defines array variables, the length of array
variables, and the length of string variables

The chapter on BASIC Concepts explains how BASIC handles
variable definition.

ASSIGNING VALUES TO VARIABLES

BASIC allows you to assign values to variables directly or by
using data statements:

DATA - stores data in your program so that you may assign

Radie fhaek

PAGE 6 - 4

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

it to a variable

LET - assigns a value to a variable (the keyword LET may be
omitted)

READ - reads the data stored in the DATA statement and
assigns it to a variable

RESTORE - restores the pointer which points to a data item
in the DATA statement

SWAP - exchanges the values of variables

PROGRAM FLOW

The Computer will execute each line in the program sequentially,
unless instructed to do otherwise. These statements change the
flow of a program, either by branching within a program or
segmenting a long program into shorter programs:

Branching within a Program

FOR/NEXT - establishes a program loop

GOSUB - transfers program control to the subroutine

GOTO - transfers program control to the specified line
number .

IF...THEN...ELSE - Performs the specified operation if the
conditions are met

ON...GOSUB - tests the value and branches to the subroutine

ON...GOTO - tests the value and branches to the program
line specified

RETURN - returns from the subroutine to the calling program

STOP - stops execution of the program

Segmenting Programs.

CALL - transfers control to the subprogram

CHAIN - loads and executes the specified program

COM - stores variables in a common area so they may be
passed to the chained program

EXT - defines the address of an external routine

END - ends compilation of main program

SUB - defines the beginning of the subprogram

SUBEND - returns execution back to the calling program

The chapter on Segmenting Programs explains how to segment
programs. ‘

Radio fhaek

PAGE 6 - 5

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INPUT/OUTPUT

Keyboard input statements allow the operator to input (type data
into memory) from the keyboard. To print data, BASIC contains
statements which output to the video display and line printer.
Data is stored on disk by using input/output statements to a
disk file.

Keyboard Input

INPUT - inputs data from the keyboard
INPUT USING - inputs formatted data from the keyboard
LINE INPUT - inputs a line of data from the keyboard

Output to the Display and Line Printer

LPRINT - prints data on the line printer

LPRINT USING - prints data on the line printer using the
specified format

PRINT - prints data on the display

PRINT USING - prints data on the display using the
specified format

Input/Output to a Disk File

CLOSE - closes a disk file

DELETE - deletes a record in a disk file

INPUT - inputs data from a disk file

INPUT USING - inputs data from a disk file using the
specified format

KILL - kills a disk file

LINE INPUT - inputs a line of data from a disk file

OPEN - opens a disk file

PRINT - prints data to a disk file

PRINT USING - prints data to a disk file using the
specified format

READ - reads binary data on a disk file

WRITE - writes binary data to a disk file

The chapter on Data Files explains how to use these statements.

Radie fhaek

PAGE 6 - 6

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

DEBUGGING

These statements build an error trapping routine, which may be
used in debugging a program or handling errors from a computer
operator:

ERROR - simulates the specified error

ON BREAK GOTO - enables a <BREAK> handling routine
ON ERROR GOTO - enables an error trapping routine
RESET BREAK - disables the <BREAK> handling routine
RESET ERROR - disables the error trapping routine
RESET GOSUB - clears all the return addresses
RESUME - terminates the error handling routine

SPECIAL STATEMENTS

DEF - defines a function

RANDOMIZE - reseeds the random generator

REM - allows insertion of programmer's comment line
SYSTEM - returns the system to TRSDOS

Radie fhaek

PAGE 6 - 7

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

FUNCTIONS

Functions are built-in subroutines. They may only be used as
part of a statement.

Most BASIC functions perform certain routines to return numeric
or string data. Special print functions are used to control the
video display.

NUMERIC FUNCTIONS

All numeric functions return a number and may be used in a
statement as numeric data. For example, the function:

SQR(9)

returns the number 3 (the square root of 9). This function may
be used in a statement as numeric data. For example:

X = SQR(9)
assigns the square root of 9 to X.

Numeric functions perform these operations:

Arithmetic Operations

ABS - computes the absolute value
SGN - computes the sign (positive, negative, zero)
SQR - computes the square root

Converting Data to a Different Data Type

CVD - converts integer data to a real number

CVI - converts real data to an integer

HVL - converts a hexadecimal string to an integer

INT - converts real data to a whole number

VAL - converts numeric characters in a string to a number

Radie fhaek

PAGE 6 - 8

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Computations on Strings

ASC - returns the ASCII code of a string character

DIG - computes the length of numeric field in a string
LEN - computes the length of a string

POS - searches for a substring within a string

Bit Manipulation

AND - calculates the logical AND
OR - calculates the logical OR

XOR - calculates the exclusive XOR

Trigonometric Calculations

ATN - computes the arctangent

COS - computes the cosine

EXP - computes the natural exponential
EXP10 - computes the base 10 exponential
LOG - computes the natural logarithm
LOG1l0 - computes the base 10 logarithm
SIN - computes the sine

TAN - computes the tangent

Special System Information

CRTX - returns the row position of the cursor

CRTY - returns the column position of the cursor
ERR - returns the error code

EOF - notifies if the end of a disk file is reached
RND - returns a pseudo-random number

STRING FUNCTIONS

All string functions return a string and may be used in a
statement as string data. For example, the function:

STRINGS (5, "*")

returns the string ***** (5 asterisks). This function may be

Radio Ffhaek

PAGE 6 - 9

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

used in a statement as string data. For example:
A$ = STRINGS(5,"*")
assigns ***** to AS.

String functions perform these operations:

Converting Numbers to String

CHR$ - returns the one-character string of the ASCII code
HEX$ - converts an integer to a hexadecimal string
STRS$ - converts numeric data to string

Inputting a String

INKEY$ - gets a keyboard character, if it has been pressed
INPUT$ - inputs a character string from the keyboard

Manipulating a String

SEG$ - returns a segment of a string
STRINGS - returns a string of characters

Special System Information

DATES - returns the date which was set when initializing
the system

TIMES - returns the time recorded in the system's clock

CRTIS$ - returns the characters from a specified position on
the video display

SPECIAL PRINT FUNCTIONS

Unlike numeric and string functions, the special print functions

do not return data. Instead, they are used to control the video
display. For example:

CRT(5,7)

Radie Sfhaek

PAGE 6 - 10

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Moves the cursor to the row 5, column 7 position on the video
display. This function may only be used in a PRINT statement.
For example:

PRINT CRT(5,7); "HEADING"

Prints HEADING at the row 5, column 7 position on the video
display.

These are the special print functions:

CRT - moves the cursor to a specified row and column
position

CRTR - moves the cursor relative to its current row and
column position

CRTG - moves the cursor to a specified position and prints
a string in the graphics mode

TAB - tabs the cursor to a specified column position

Radie fhaek

PAGE 6 - 11

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~= FUNCTION --

ABS
Compute Absolute Value

~ ABS(number) . ~ : ;
- 'number’' is any numeric expression

ABS returns the absolute value of the 'number'. The absolute
value is the magnitude of the number without respect to its
sign.

ABS returns the same type of value (integer or real) as number.

Examples
PRINT ABS(3)
Prints 3.
PRINT ABS(-3)
Prints 3.
PRINT ABS(0)
Prints 0.
X = ABS(Y + 3X)
The absolute value of Y + 3X is assigned to X.
IF ABS(X) < 1E-6 THEN PRINT "TOO SMALL"

TOO SMALL is printed only if the absolute value of X is less
than the indicated number.

Radie Sfhaek

PAGE 6 - 12

OFF RY
RIGHT !
OFF BY
RIGHT!
OFF BY
OFF BY
RIGHT!

9 . GUESS AGAINT? 1
GUESES MY NEXT NUMBER? &
2 . GUESS AGAINTY &
GUESES MY NEXT NUMBER? 5
2. GUESBS AGATINT 3

4 . GUEBS AGAIN? 7
GUESS MY NEXT NUMBER?

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™
Sample Program
B REM % SAMPLE PROGRAM DEMONSTRATING ARE *x#
9@ REM
100 INTEGER A-Z
118 PRINT CHR®&(28) 5 CHRE(31) 3
120 PRINT "GUESS MY NUMBER "3
13@ X = RND(@) = 20 + 1
140 INPUT Y& IF X = ¥ THEN 17@
15@ PRINT "OFF BY"3 ARB(X-Y): ". GUESES HGATNY 3
160 GOTO 140
178 PRINT "RIGHT! GUESS MY NEXT NUMBER"S
180 GOTO 13@
GUESS MY NUMBER 7 16

Radio fhaek

PAGE 6 - 13

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~— FUNCTION --

AND
Calculate Logical AND

AND(number,fnumber) -
'j'number is any number in the range of
f*—32768 to 32767.:;_jg~ - ,

AND is a logical operation performed on the binary
representations of the two 'numbers'. AND compares each bit of
the two numbers. A binary 1 is returned if both bits are a 1; a
0 is returned in any other case:

. Pirst second;, :‘_,~ Bit .
. Number Number Returned ;“f f“f'”‘
-1 o 0

If 'number' is real, AND will convert it to an
integer. The binary number that AND returns is always
expressed as an integer.

Note: Also see OR and XOR.

Examples

PRINT AND(51, 15)

Prints a 3. The operation is performed on the binary
representation of the two arguments:

Binary
Integer Representation
51 00110011
15 00001111
3 00000011
®
Radiie fhaek

PAGE 6 - 14

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

A = AND(51,15)
Performs the AND operation and assigns the value of 3 to A.

The two examples below illustrate a common use of AND. All
other bits can be masked out to see if one particular bit is
llonll (l):

IF AND(128, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "FALSE".

IF AND(96, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "TRUE".

Sample Program

16 REM EEE AND FUNCTION =##

2@ INPUT PROMPT="ENTER &N INTEGER VALUE (32768 TO 32747) "3 X%
3@ PRINT "LEAST SIGNIFICANT BYTE I& "3 AND(X%s&QBOFF)

40 GOTO 20

*RU

ENTER AN INTEGER VALUE (~327&8 TO JA2767) 22257
LEAST SIGNIFICANT BYTE I8 211

ENTER AN INTEGER VALUE (~32768 TO 33767) 37765
LEAST STGNIFICANT BYTE I8 3

ENTER AN INTEGER VALUE (32748 TO 32747) .

Radie fhaek

PAGE 6 - 15

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

ASC
Get ASCII Code

ASC returns the ASCII code of the first character in the
'string'.

Examples

PRINT ASC("A")
PRINT ASC("AB")

Both lines will print 65, the ASCII code for "A".
X = ASC(BS$)

Assigns the ASCII code for B$ to X.

Sample Program

180 REM ##% SAMPLE PROGRAM DEMONMSTRATING AEC *%%

116 REM

120 REM #%% CHANGING THE OUTPUT OF ALL THE CHARACTERS ®%¥
133 REM #¥% ON YOUR KEYBOARD ®#%

140 REM

150 PRINT "TYPE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT"
168 INPUT B%

Radio fhaek

PAGE 6 - 16

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

1768 PRINT "MOW TYPE ANY CHARACTER ON YOUR KEYBOARD"

186G PRINT "NOTICE TH&T THEY HAVE &Ll BEEM CHANGED®

198 PRINT "YOU WILL HAVE TO PRESS "B TO GET OUT OF THIS PROGRAMY
20 CE o= INKEYS ¢ IF Cd o= "0 THEN 200

218 IF C% = "@" THEN 250

220 C% = CHRH(ADC(BS))

230 PRINT C#s

248 GOTO 206

250 BTOP

)

TYFE THE CHARACTER YOU WANT ALL YOUR KEYS TO REPRESENT
7Y

NMOW TYPE ANY CHARACTER ON YOUR RKEYEROARD

NOTICE THaT THEY HaVE all. RBEEN CHANGED

YOU WILL HAVE TO PRESS *@° TO GET OUT OF THIS PROGRAM
YYYYYYYYYYYYYYSTOP LLINE 258

¥,

Radie fhaek

PAGE 6 - 17

MODEL I/ITI COMPILER BASIC BASIC KEYWORDS
TRS-80™

== FUNCTION --

ATN
Compute Arctangent

ATN returns the angle of the 'number'. The number is the
tangent. The angle will be in radians. To convert to degrees,
multiply ATN(X) by 57.295779513082.

The result is always a real number.

Examples

X = ATN(Y/3)

Assigns the value of the arctangent of Y/3 to X.
PRINT ATN(1.0023) * 57.2

Prints 44.9905.
R =N * ATN(-20 * F2/F1l)

Assigns the indicated value to R.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

Radie fhaek

PAGE 6 - 18

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM wxE SAMPLE FPROGRAM DEMONSZTRATING ATN ###
2@ REEM

1@ PRINT "INPUT TANGENT®

118 INPUT T

1320 PRINT "ANGLE IS5 ATN(T) % 37.29578

138 GOTO 108

#RU

INPUT TANGENT

7 13

ANGLE 185 86&. 1859
INPUT TANGENT

7 A

AMGLE I8 71.3536051
INPUT TANGENT

7 L EBAT

ANGLE I8 2,553z
INPUT TANGENT
'? L

Radie fhaek

PAGE 6 - 19

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— STATEMENT =--

CALL
Execute External Subroutine

;‘CALL~“subname", data list
'subname' is a 1-6 character string constant~
'data list' consists of any of the follow1ng
separated by commas:
numeric expression
string variable
string constant
subscripted variable

A CALL statement instructs the computer to run a subprogram. In
addition, it sends the list of data that you specify to the
subprogram. The subprogram performs its operations on this data
and sends the resulting values back to the main program.

A subprogram, like an internal subroutine, is called from the
main program or another subprogram, executed, and returns to the
line after the CALL. It may be as many lines as you want and
may have its own local variables, independent of the main
program.

A subprogram has the added flexibility of performing the same
operations on whatever data is sent to it by the main program.
This is especially helpful if you are performing the same
complicated computations with different variables repeatedly in
different parts of your program.

CALL will not "Load" or "0ld" a subprogram. All subprograms
must be Loaded or Appended into memory before the main program
is executed.

CALL may also be used to call an external machine language
routine. To do this, you must have an EXT statement in your
program defining the memory address of the routine. See EXT and
the chapter on Segmenting Programs.

Radie Sfhaek

PAGE 6 - 20

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

If you have a subprogram beginning with the statement:
SUB "ADD"; X, Y$
The following CALL statements could be used:
CALL "ADD"; 5, "HEADS"
Executes the subprogram named "ADD". This statement also passes

the data 5 and "HEADS" to the subprogram. The subprogram

assigns 5 to X and "HEADS" to Y$. It then performs its routine
on this data.

CALL "ADD"; A, BS

This statement also executes the subprogram "ADD". It passes
the data A and B$ to the subprogram. The subprogram assigns the
value of A to X and B$ to Y$, performs its operations on X and
Y$, and sends the resulting values back to the main program as A
and BS.

If a subprogram begins with the statement:

SUB "CHART"; M(), N$(,)
Then:

CALL "CHART"; C(), DS(,)
Executes the subprogram "CHART" sending all the data in the
one~dimensional array C and the two-dimensional array D$ to the
subprogram. The subprogram performs its routine on the data and
sends the resulting data back to the main program.

CALL "CHART"; SALES(), ITEMSS$(,)
Executes the same subprogram CHART, which will perform the same

routine on all the data in the SALES and ITEMSS arrays and send
the resulting data back to the main program.

Note: For information on how to use subprograms, see the
section on Segmenting Programs. Also see END, SUB, and SUBEND.

Radie fhaek

PAGE 6 - 21

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Programs

g

1]
168
118
126
156
148
15
166
178
18

#RL)
&4
8TaP L.

=15

98
i@
110
128
138
148
158
1468
17@
18@
190
pedvl}
218

#RU
INPUT
T E4h
INPUT
715
ANNUAL

1248
STOP L
#,

REM % SAMPLE PROGRAM DEMONSTRATING CALL #%#
REM

¥ o= 2o ¥ o= X
Call. "SUBRPROGY 3
CaLL "GUBPROGY 5
Call. "SURPROGY
PRINT XsYsZ

END

SUR "SUBPROG"3 A
S o= A ¥ 2

SUBEND

1
L

b D N

& 8
INE 158

REM &% SAMPLE PROGRAM #= DEMONSTRATING CALL *x%
REM

PRINT "INPUT WEEKLY GROCERY EXPENSES"

INPUT

CALL "ANNUAL"™: F

PRINT "INPUT WEEKLY GASOLINE EXPENSES"
INPUT G

Call. "AaNNUAL"s G

PRINT "ANNUAL EXPENSES ARE -~ "

PRINT F35 "FOR GROCERIES": G35 "FOR GABOLINE"
END _

SUB " ANNUALY s X

X = X # 52

SUBEND

WEEKLY GROCERY EXPENSES
WEEKLY GABOLINE EXPENSES
EXPENSES ARE ————

FOR GROCERIES 780 FOR GASOLINE
INE 18@

Radie Shaek

PAGE 6 - 22

PAGE 6 - 23

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS
I TRS-80
g6 REM #E% SAMPLE PROGRAM #3 DEMONGSTRATING CaALL ®x#
PE REM
106 DIM Uiz
11@ DIM od1)
120 FOR T = 1 TO 12 @ READ U{I) NEXT T
138 FOR I = 1 TO 12 & READ OCI) & NEXT I
14@ CaLl "CHART"3: "UTILITIES"s U{)
15@ CaLl "CHARTY: "OFFICE BUPPLIES". O()
160 DATA 150 175 100, 1205 1305 170 14580, 9B 1455 1355 145
178 DATA 10075653930 1045 120+ 110 92y B8 90 7@ 66
18 END
1@ SuR "CHART" s A%s B()
208 DIM CHEC1LE)
218 PRINT CHR$(28)s5 CHR$(31)
220 PRINT CRT(@s 15335 "EXPENSES ——— "5 A%
H38 PRINT
240 FOR T = 1 TO 12
258 READ C#H{I): X = B{I)/3
268 PRINT CH(I)5 " "3
270 FRINT STRINGSH(Xs "X")
280 NEXT I
290 PRINT CRT(154@3)3 "PRESS <ENTER:"
301 As% = INPUTH(L)
310 DATA "JAN": "FEB" s "MAR" s "APR" s "MAY " s "JUN" s "JUL." s "AUG" s "GEP"
320 DATA "OCT" s "NOV" 3 "DECY
338 SUBEND
®
Radie fhaelk

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT --

CHAIN
Load and Execute Next Program

CHAIN "fllespec" : : -
'filespec' is a string constant or a ,
representlng a TRSDOS flle speciflcatlon“

CHAIN loads a program stored on disk into memory and executes
it. When the chained program is loaded, the resident program is
deleted from memory.

Note: Also see COM and the chapter on Segmenting Programs.

Examples

CHAIN"NEXT/BAS"
Loads the program NEXT/BAS and executes it.
CHAIN"PROG2/CMP:1"

Loads the program PROG2/CMP from the diskette in drive 1 and
executes it.

CHAIN AS

Loads the filespec A$ and executes it.

Sample Program

1@ REM wxs PROGIZ/BAS MUST FIRST BE SAVED ON DIBK ¥%#
S PRIMT "EMDIMNG PROGRAM 1 -~ BEGINMING PROGRAM 2"
a3 CHAIN "PROGZ/BARB"

Radie fhaek

PAGE 6 - 24

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS

TRS-80™

CHRS$

—-— FUNCTION --

Get Character for ASCII or Control Code

CHR$(number)
- 'number'

is a numeric expre551on in the range

;&32”68 to 32767

CHRS$ is the inverse of the ASC function. By specifying an ASCII
code, CHRS returns the code's corresponding one-character
string. This one-character string may either be one of the keys

on your keyboar

d or a control character.

Note: To produce graphics characters, see CRTG

Examples

PRINT CHRS$(35)

Prints a # on the display.

PS$ = CHRS(T)

The number repr

esented by'T is converted into its ASCII

character equivalent assigned to PS$.

PRINT CHRS$(1

26)

Prints the symbol for a space (7). Notice that this is not a

keyboard symbol

°

A$ = AS$ & CHRS(I)

The character whose ASCII code is I is added to the end of AS.

Sample Programs

Radie fhaek

PAGE 6 - 25

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

88 REM ##% SAMPLE PROGRAM #1 FOR CHR$ ##*%

90 REM

108 PRINT CHR#%(=8)35 CHR$(31)

11® PRINT "TYPE IN THE CODE (@-127)"

128 INPUT C

1380 PRINT CHR$(C)3s " JUST PRINTED THE CODE "5 C
140 GOTO 110

TYPE IN THE CODE (@-127)

7?7 35

JUST PRINTED THE CODE 35

TYPE IN THE CODE (@-127)

7 48

@ JUST PRINTED THE CODE 48

TYPE IN THE CODE (@-127)

o
8@ REM ##% BAMPLE PROGRAM #2 DEMONSTRATING CHR$ *¥#
90 REM

108 PRINT CHR#$(=8)3 CHR%$(31)

118 PRINT "THIS I8 THE LINE THAT WILL SLOWLY GET ERASBED"S
1200 FOR 1 1 TO 5@ = NEXT I = *INITIAL DELAY

130 FOR I 1 TO 400 = NEXT I =

148 PRINT CHR#%(8)3

156 GOTO 136

THIS IS THE LINE THAT WILL SLOWLY GET ERASED
THIS IS THE LINE THAT WILL SLOWLY GE

THIS I8 THE LINE THAT WILL SLOWLY

THIS IS5 THE LINE THAT W

THIS IS THE L

THIS 1

Radie fhaek

PAGE 6 - 26

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= STATEMENT --

CLOSE
Close Disk File

This statement closes access to the file or files referenced by
'file-unit', assigned when the file is opened.

Examples

CLOSE #1
Closes file-unit 1.
CLOSE #START + NCRMT
Close file-unit (START + NCRMT).
CLOSE

Closes all open file-units.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 27

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

COM
Allocate Common Variable Area

You may use COM to pass one or more variables to the next
program. COM allocates a common area in the program for
variables so that they may be passed to the next program.

Note: Also see CHAIN and the chapter on Segmenting Programs.

Program 1 Program 2

COM __data data b COM

CHAIN ‘T——“

Examples

COM C, DS

Allocates a common area for storing the variables

Rade Sfhaek

PAGE 6 - 28

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80™

C and D$ so they may be accessed by the next program.

COM BS$(50)

Allocates a common area for storing array B$ with 51 elements
(0-50) so that the array may be accessed by the next program.

COM A(10,10)

Allocates a common storage area for the two dimensional array A.

Sample Progra

16
=0
S
4@
i
&@
TR
ae
@
1@

REM
REM
REM
REM
REM
COM
REM

PRINT

=% 1

¥EE PROGZ/BAR MUST FIRST BE SAVED ON DISK w%##

#EE PROGZ/BAR WILL RETAIN WHATEVER VALUES =%
w#EE THIE PROGRAM SETHS FOR &% AND B ¥

£

wEE PROGI/BAE MUST HAVE &N IDENTICAL COM LINE

TINPUT & NaAME AND A MUMBER®

INPUT &% B

CHATN

TRPROGE/BARY

Radie fhaek

¥

PAGE 6 - 29

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= FUNCTION --

COS
Compute Cosine

~ COS(number)
. 'number! is

COS returns the cosine of the 'number'. The 'number' should be
an angle, which must be given in radians. When the ’'number' is
in degrees, use COS('number' * .01745329251993).

The result is always a real number.

Examples

Y = COS(X)
Assigns the value of COS(X) to Y.
Y = COS(X * .01745329251994)

If X is an angle in degrees, the above line will give its
cosine.

PRINT COS(5.8) — COS(85 * .42)
Prints the difference of the two cosines.
G2 = Gl * ((Ccos(Aa)) * 15)

Computes the indicated cosine and stores it in G2.

Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Radie fhaek

PAGE 6 - 30

MODEL I/ITII COMPILER BASIC BASIC

TRS-80™

KEYWORDS

#RU
InFuT
? 3@

Program

REM wdE BAMPLE PROGRAM DEMONSTRATING COB %#x

REM

PRINT "INFUT ANGLE IN DEGREESY
INPUT A

A = A/ BT7.2957795

PRINT "COSINE I8 "5 COGMH)
GOTO 16@

ANGLE IN DEGREES

COSINE I8 @.8&66825

INPUT
745

ANGLE IN DEGREES

COBINE IS @.7671@7

INPUT

7

ANGLE IN DEGREES

Radie fhaek

PAGE 6 - 31

MODEL I/III COMPILER BASIC BASIC KEYWORDS

W

TRS-80

—-— FUNCTION --

CRT
Position Cursor

is a number between O,énd'63 .
f:bge,‘BASIcaperforms a MOD 64

CRT, used in a PRINT statement, positions the cursor at the

‘row' and 'column' specified on the video display. It may only
be used in a PRINT statement.

Note: The Model I/III video display consists of 16 rows (0
to 15) and 64 columns (0 to 63):

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

W N B W N = O

oy
[=]

oy
ury

-
N

s
w

-
=Y

-
(3]

'row' and ‘'column' refer to a row and column on the video

Radie fhaek

PAGE 6 - 32

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

display.

Examples:

PRINT CRT(0,63);"&"

Positions the cursor at the top right hand corner and prints
ll&ll°

PRINT CRT(15, 0);"THIS IS LOCATION 15, 0"

Positions the cursor at the bottom left-hand corner of the
display and prints the message beginning at that position.

PRINT CRT(17, O0);"###"

Positions the cursor at the beginning of row 1 in position 1,0
and prints ###. (Since 17 is outside the range 0-15, BASIC
performs a MOD 16 and reduces the 17 to a 1.)

Sample Program

1@ PRINT CHR$(28)3 CHR$(31)

A PRINT "WHAT IS5 YOUR LAST NaME"

3B PRINT CRT{Z+@)3

4@ INPUT A%

58 PRINT CRT(&s@)3 "YOUR FIRST NAME"

6@ PRINT CRT(8:0@)3

7@ INPUT B$

8O PRINT CRT(1Z+10)3 "THANK YOUs "3 B%s * "3 Ag; !0V

Radie Shaek

PAGE 6 - 33

MODEL I/III COMPILER BASIC

TRS-80™

WHAT T8 YOUR LAST NAME
7 COX

YOUR FIRST NAME

7 RON

THAMK YOUs RON COX!

S5TOP LINE &
y.

Radie fhaek

PAGE 6 - 34

BASIC KEYWORDS

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~= FUNCTION --

CRTG
Print in Graphics Mode

CRTG used in a PRINT statement, prints 'string' in the graphics
mode. The 'string' is printed as follows:

1. The first character of the string is printed at the
'row', and 'column' position specified.

2. The cursor is then advanced to the next column position
on the same row. If the next position is 64, the cursor wraps
the display to column 0 of the next row. If the next row is 16,
the cursor wraps the display to row 0.

3. The next character in the string, if there is one, is
then printed at the cursor position. Steps 2 and 3 are then
repeated.

Note: Model III users have the capability to print special
characters, CHR$(192-255), but the Model I will not print any
but regular graphics. The switch to swap space compression
characters out and special characters in must be activated for
special characters to be printed. PRINT CHRS$(21) will set or
reset the switch. The switch will stay set or reset, even if
you leave RSBASIC.

The 'string' may contain up to 255 characters which may be
printed in graphics mode. The characters are listed in the
Appendix. The first 32 can only be accessed by a POKE. The
rest are alphanumeric or control characters or special
characters, depending which switch is on.

As shown in the listing, all of the alphanumeric characters may

Radie fhaek

PAGE 6 - 35

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

be referenced either by the keyboard character itself, or by the
character's ASCII code. For example:

"MII
CHRS$ (77)

AS
AS

both assign the character M to AS.

Special and regular graphics characters may be referenced by the
character's ASCII code:

AS$S = CHRS$(170)

assigns the regular graphics character which looks like a long
thin column to AS.

For Model III users:
10 PRINT CHRS$(21):
20 B$ = CHRS$(196)
30 PRINT CRTG(8,32,BS)

will print a smiling face in the center of the screen.

The easiest way to print graphics images on the display is to
build a string of graphics characters. For example:

10 AS$S = CHRS$(140)
20 BS = CHR$(157)
30 CS$ = AS&BS&AS&BS&AS&BS&AS&BS&ASBS

40 PRINT CHRS$(28); CHRS(31);
50 PRINT CRTG(0,0,CS)

Prints an image which looks like a railroad track at the top
left hand corner of the screen.

The sample programs for CRTG illustrate different ways of
printing in the graphics mode.

Note: Also see CRT, PRINT, and CHRS$

Examples

PRINT CRTG(15,0,C$)

Prints the contents of string C$ at the bottom left hand corner
of the display.

Radie fhaek

PAGE 6 - 36

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

AS = CHRS(132)
PRINT CRTG(8,32,AS)

Prints a tiny square in the center of the display.
PRINT CRTG(8,32,"x")

Prints an X in the center of the display.

Sample Programs

18 REM #%% SAMPLE PROGRAM #1 DEMONSTRATING CRTG #®#
20 REM

3@ ON BPREAK GOTO 170

48 PRINT CHR&{(28)3 CHR$(31)

5@ PRINT "HIT <BREAK:> TO STOP"

6@ PRINT "SWITCHING TO CHARACTER MODE"
7@ PRINT CHR%(Z1)

B@ Ce = "CLUBRS & CHRS(19%)

8 D% = "DIAMONDE " & CHR$(194)

108 H$ = "HEARTSH Y& CHR&(193)

11@ 84 = "HPFADES & CHR$ (192D

120 PRINT CRTG(&s 10 CH)

138 PRINT CRTG(7s1@:D%)

140 PRINT CRTG(8s 1@sHS)

158 PRINT CRTG(Z:18:5%)

16@ GOTO 160

178 PRINT "SWITCHING BACK TO NORMAL MODE"
180 PRINT CHR$(Z1)

19@ 5TOP

Radio fhaek

PAGE 6 - 37

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

13 REM ¥#¥% SAMPLE PROGRAM #32 DEMONSTRATING CRTG #%x%
20 REM

3B PRINT "HIT <BREAK:> TO STOPR"

4@ ON RREAK GOTO 170

5@ PRINT CHR$(28)35 CHR$(31)

6H@OPRINT "SWITCHING TO CHARACTER MODE"

70 PRINT CHR$(Z1)

8O A% = CHR${(196&)

9 B CHR&(197)

1@ Cs CHR$(225) & CHR$(234) & CHR$(Z236)
11@ D% CHR$(198) & " " & CHR$(199)
120 PRINT CRTG(& 30 0%)
130 PRINT CRTG(7s29:CH)
140 PRINT CRTG(E: 29:D%)
150 FOR T = 1 TO 1@ = NEXT 1

16 SWAP A% Bé @ GOTO 120
178 PRINT "SWITCHING BACK TO NORMAL MODE "
180 PRINT CHR&(Z1)
199 STOP

g

18 REM ¥u%E SAMPLE PROGRAM #3 DEMONSTRATING CRTG #¥%
2@ REM
2B ON BREAK GOTO 182
40 PRINT CHR&(28)35 CHR${31)
B OPRINT "HIT <BREAK: TO STOPY .
HB O PRINT "SWITCHING TO CHARACTER MODE"
7@ OPRINT TAR(ZE)Ys "POPULATION EXPLOSION Piie
B@ PRINT CHR&(Z1)
G A% = CHR$OES3)
103 1 = 3
110 FOR J = 1 TO &B STEF 15-1
12@ PRINT CHTG{I+Js0%)
130 NEXT J
4@ 1 o= T + 1
i%@ IF 1 = 14 THEN GOTO 170
16@ GOTO 118
17& GOTO 17@
1860 PRINT "GWITCHING BACK TO NORMAL MODE"
19@ PRINT CHR&CEL1)
2B 8TOP

Radie fhaek

PAGE 6 - 38

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

CRTIS
Read Video Display

CRTI$ reads the characters on the video display in the area of
the display that you specify. It returns a string of characters
beginning on 'row' and 'column' with the length that you
specify.

Note: See CRT for an illustration of row and column positions.

Examples

If, immediately before executing the statements below, this is
printed on your video display beginning at position row 1,
column O:

(c) 1979 by Ryan-McFarland Corp. All rights reserved.
Then:

PRINT CRTIS(1,0,10)
Prints "(c) 1979 b"

A$ = CRTIS$(1,0,54)

Stores "(c) 1979 by Ryan-McFarland Corp. All rights reserved."
in AS.

PRINT CRTIS$(1,12,42)

Prints "Ryan-McFarland Corp. All rights reserved."

Radsie fhaek

PAGE 6 - 39

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™ |
Sample Programs
&0 REM ##% SAMPLE PROGRAM #1 DEMONSTRATING CRTI$® #xx
70 REM
g REM ¥¥% PRINT VIDEO DISGPLAY TO THE LINE PRINTER %%

90 REM

100 DIM Ad%éL4(16)

118 FoOR Z = @ TO 15

120 A%(Z) = CRTI®(Z:0:64)
138 LPRINT &%{Z)

140 NEXT Z

8@ REM ¥%% SAMPLE FPROGRAM DEMONSTRATING CRTIS$ wxw
98 REM

1836 PRINT CHR$(28)3 CHR#$(31)

1@ PRINT "TYPE IN ONE LINE OF TEXT®

128 PRINT CRT(3:0)3

130 A% = INPUTSH(L4)

140 PRINT:PRINT:PRINT

158 PRINT "THIS IS THE LINE YOU TYPED: *

168 PRINT: PRINT CRTI$(3s@s6&4)

170 GOTO 178

TYPE IH ONE LINE OF TEXT

I WILL PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXTs IF POSSIBELE

THIS I5 THE LINE YOU TYPED:

I WILL PROCEED TO TYPE IN ONE COMPLETE LINE OF TEXTs IF POSSIBPLE

Radie fhaek

PAGE 6 - 40

MODEL I/IITI COMPILER BASIC

REM
REM
INTEGER A2
DIM V664 (16)
PRINT CHR$ (Z8)
PRINT "TYFE
A% = INKEY®$: IF
PRINT CHR$ (Z8) 3
A% = INKEY®: IF
PRINT A#$3
GOTO 160
REM — %w
IF A% = CHR$(8) THEN
IF A% = CHR$(13) THEN
GOTO 160
REM #%% READ VIDEO w%%%
ROW = CRTX: COL = CRTY
FOR LN = @ TO ROW - 1

Y (LN
NEXT LN
V& (ROW) =
PRINT CHR$ (28) 3
A% = INPUTS(1)
FOR LN = @ TO ROW

PRINT V& (LN) 3
NEXT LN

CHR% (31)
X

H% o om o

176

##% SAMPLE PROGRAM #2

IN AL MUCH AL

CHR$(31) 3

w= CRTIS (LN @y &4)

TRS-80™

BASIC KEYWORDS

WISH-~PRESS
140

YOU
THEN
A% 3

THEN 198

CHECK FOR VALID KEY *#®#%

230

CRTIS(ROWs @y COLL)
CHR%(31) 35

"TEXT STORED--PRESS

Radie fhaek

DEMONSTRATING CRTI% #x#%

ZENTER> TO STORE DISPLAY"

SENTER:> TO SEE IT"

PAGE 6 - 41

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— FUNCTION --

CRTR
Move Cursor

CRTR(row;co‘umn‘r‘

CRTR may only be used in a PRINT statement. PRINT CRTR makes
the cursor move in relation to its present position on the video
screen. If this causes the cursor to "move off the display"”,
the cursor will wrap around.

CRTR works by performing this calculation:

the number of 'rows' and 'columns' you specify
+ the cursor's present row and column position

the cursor's new row and column position

If the sum of the rows is greater than 15, BASIC will perform a
MOD 16. If the sum of the columns is greater than 63 BASIC
will perform a MOD 64.

For example, if the cursor is presently at row 10, column 50,
and you execute a CRTR(10,20) statement, BASIC will compute the
sum of the two rows and the two columns:

Row Column
CRTR specification: 10 20
Present cursor position: +10 + 50
Totals: 20 70

The results are both outside the range of the video screen.
BASIC will then perform a MOD 16 on the row total (20 / 16 =1
remainder 4) and a MOD 64 on the column total (70 / 64 =1
remainder 6). The result of this is row 4, column 6.

Note: See CRT for an illustration of row and column positions.

Radie fhaek

PAGE 6 - 42

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

If the cursor is currently at row 10, column 50 ----
PRINT CRTR(2, 10)
causes the cursor to more to row 12, column 60.

PRINT CRTR(2, 10);"X"

causes the cursor to move to row 12, column 60. It prints the X
at the next column position -- row 12, column 61.

PRINT CRTR(6,40); "**xxn

causes the cursor to wrap around to row 0, column 26. The **%*%*
is printed at beginning at the next column position -- row 0,

column 27.

Sample Program

BB REM ##% SAMPLE PROGRAM DEMONSTRATING CRTR #%%

GH REM

1 PRINT CHR$(Z8)s CHR%(31)

116 PRINT CRT (@) 53" X" 5

120 PRINT CRTR{1s@35"X" 3

138 FOR I = 1 TO 5@ = REM #es THESE TWO LINES SET A PAUSE s
14 NEXT I : REM #%% AFTER EACH X IS PRINTED %%

isE GOTO 126

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= FUNCTION --

CRTX
CRTY
Find Cursor Position

CRTX returns the row and CRTY returns the column of the current
cursor position.

Note: See CRT for an illustration of row and column positions.

Examples

If the cursor is currently on row 10, column 15 of the video
display:

R = CRTX
Stores 10 in R
C = CRTY
Stores 15 in C
PRINT "CURSOR IS IN ROW "; CRTX; " COLUMN "; CRTY

Prints 'CURSOR IS IN ROW 10 COLUMN 15°'.

Sample Program

Radio Sfhaek

PAGE 6 - 44

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

88 REM ¥%# BAMPLE PROGRAM DEMONSTRATING CRTX: CRTY #*#%
Y REM

106 PRINT CHR& (281 CHR$(31)

11@ PRINT "TYFE AN <X> ANYWHERE ON THE SCREEN -

120 PRINT "YOU MAY USE <SPACE BARX AND <ENTER: TO POSITION CURSOR"
1360 &% = TNKEY®

140 PRINT A%3

5@ IF A% < "X THEN 133

16 ROW = CRTX ¢ COL = CRTY

176 PRINT ¢ PRINT

TEBB PRINT "YOUR <X I8 ON ROW"s ROWs " AND COLUMN"3$ COL

TYFPE AN <X ANYWHERE ON THE SCREEN ~-
YOU MaAY USE <8PACE BAR:> AND <ENTER:> TO POSITION CURSOR

X

YOUR <Xx I8 ON ROW 7 AND COLUMN 1
STOP LLINE 1808

Radie Shaek

PAGE 6 - 45

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

CVD
Convert to Real Value

59 ¢VDKru7f4""
-

nteger in the range of [-32768,32767]

CVD converts the 'number' to a real number.

Examples

PRINT CVD(30000) + CVD(10000)

Converts 30000 and 10000 to real numbers, performs real number
addition, and gives the correct answer. (See explanation on
numeric operations in the chapter on BASIC Concepts.)

Sample Program

80 REM *¥%¥% SAMPLE PROGRAM DEMONSTRATING CVD ##%

98 REM

188 PRINT "SINCE 30BBD IS AN INTEGERY

118 PRINT "RUT 480600 IS5 QUTSIDE THE INTEGER RANGE"

126 PRINT "THE PROBLEM 36080 + 30006 CAUSES THIS TO HAPPEN ...°"
130 PRINT "300600 + 30000 = "3 300008 + 30000

140G PRINT

150 PRINT

160 PRINT "USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERG"
170 PRINT "THE PROBLEM IS SOLVED CORRECTLY ..."

180 PRINT "30000 + 30000 = "3 CVD{3B00G) -+ CVD(3DRGO)

Radie fhaek

PAGE 6 - 46

MODEL I/III COMPILER BASIC BASIC

KEYWORDS

TRS-80™

#RU
SINCE 30002 I5 AN INTEGER
BUT 60000 IS5 OUTSIDE THE INTEGER RANGH
THE PROBLEM 30000 + 30000 CAUSES THIS TO HAPPEN ...
NUMERIC OVERFIL.OW ERROR LLINE 130
32767

USTING CVD TO CONVERT BROTH OPERANDS TO REAL NUMBERS
THE PROBLEM I8 SOLVED CORRECTLY ...

QN1 1711417 I SN 174 174 1 R X Va1 a1 a1V

STOP LINE 18

Radie fhaek

PAGE 6 - 47

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— FUNCTION --

CVI
Convert to Integer Representation

,CVI(number) . , o . . ;
‘ ‘number is a numerlc expre851on 1n the range of
—32768 to 32768 - ;

CVI returns the largest integer not greater than the 'number’.
For example, CVI(1l.5) returns 1l; CVI(-1.5) returns -2. The
result is always a two-byte integer.

Since integers are stored in two bytes and real numbers are
stored in eight bytes, converting a number to its integer
representation changes its storage format. BASIC will execute
numeric operations, such as addition, subtraction,

multiplication, and division, much more quickly with integers
than with real numbers.

Examples

PRINT CVI(15.0075)
Prints 15.

PRINT CVI(-15.0075)
Prints -16.

PRINT CVI(6.1 + 2.2)
Prints 8.

A = CVI(X)

Assigns the integer representation of X to A.

Radie fhaek

PAGE 6 - 48

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
80 REM #¥% SAMPLE PROGRAM DEMONSTRATING CVI #x%

20 REM

108 PRINT "ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)"
110 INPUT N

120 PRINT "THE INTEGER PORTION I&"35 CVI(N)

130 GOTO 100

#RU

ENTER A NUMBER WITH A FRACTIONAL VALUE (DDDD.DDDD)
7 2.825

THE INTEGER PORTION IS 2

ENTER & NUMBER WITH & FRACTIONAL VALUE (DDDD.DDDD)
7 378.050

THE INTEGER PORTION I8 378

ENTER A NUMBER WITH A FRACTIOMAL VALUE (DDDD.DDDD)
7

Radie fhaek

PAGE 6 - 49

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— STATEMENT --

DATA
Store Program-Data

*,DATA 1tem~llst . ‘ ~ :
Yitem list' 1s a llSt of strlng and/or numeric
constants, separated by commas. String
constants must be in quotesﬁ ‘

The DATA statement lets you store data inside your program to be
accessed by READ statements. The data items will be read
sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA
statement.

DATA statements may appear anywhere it is convenient in the
program. Generally, they are placed together, but this is not
required. It is important that the types of data match up with
the corresponding variable types in the READ statement.

The data in DATA statements may only be constants. No variables
or expressions are allowed.

~’k‘iV Cam
10 DATA 5,6

40

Radie fhaek

PAGE 6 - 50

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

DATA "NEW YORK", "CHICAGO","LOS ANGELES", "PHILADELPHIA"
This line contains four string data items.

DATA 3.72,3.14159,47.29578,378,535
This line contains five numeric data items.

DATA "SMITH, T.H.",38,"THORN,J.R.",41

This line contains two string and two numeric data items.

Sample Program

B0 REM *#% SAMPLE PROGRAM DEMONGSTRATING DATA ##ux

9% REM

160 DIM SaALES(E)

11@ FOR X = 1 TO &

120 READ DEPT%

130 PRINT "INPUT AMOUNT SO0OLD IN THE "3sDEPT$: " DEPT. 3%

140 INPUT SaLES(X)

150 MNEXT X

160 DATA "PRODUCE" s "MEAT" s "PAKERY" ¢ " CANNED GOODE" s "DAIRY" s "FROZEN FOODS"

¥R

INPUT AMOUNT S0LD IN THE PRODUCE DEPT. 7 25
INPUT AMOUNT SOLD IN THE MEAT DEPT. 7 58

INPUT AMOUNT SOLD IN THE BAKERY DEPT. 7 15

INPUT AMOUNT S0OLD IN THE CaNNED GOODS DEPT. 7 23
INPUT AMOUNT SOLD IN THE DAIRY DEFPT. :7 38

INPUT AMOUNT SOLLD IN THE FROZEN FOODS DEPT. 17 32
STOP LINE 160

Radie Shaek

PAGE 6 - 51

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION --

DATES
Get Today's Date

 DATES

This function lets you display today's date and use it in the
program.

The operator sets the date initially when TRSDOS is started up.
When you request the date, BASIC will display it in the fashion:

04/28/79

which means April 28, 1979.

Example

PRINT DATES
which returns:

04/28/79

Sample Program

B REM ®¥aE SAMPLE PROGRAM DEMONSTRATING DATES %%
2@ REM

100 PRINT DATES

11@ PRINT "INVENTORY CHECK: "

128 IF DATE$ <> "12/731/81" THEN 148

138 PRINT "Today iz the laszt dav of December 1981."
148 PRINT "Time to rerform the monthly inventorw.

Radie fhaek

PAGE 6 - 52

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

15@ GOTO 216

168 DE = DATES @ A% = SEGEHE(D%Hs 44)

173 B o= Val.(A$)

180 M$ = SEGH(DEHs 1. 20

1900 IF M$% = "12" THEN PRINT J1~B3 " davwz wuntil inventory time." & GOTO 216
B PRINT "Don®t worey about December inventorys how about this month?=7"
211G STOP

#RLJ

@gisal/al

INVENTORY CHECK:

Don’t worey about December inventorys how about thiz month?s7?

STOP LINE 210

Radio fhaek

PAGE 6 - 53

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

-- STATEMENT --

DEF
Define Function

~ DEF function name(dummy variable, ...) = formula
‘function name' is any valid variable name. ;
'dummy variable' is any valid variable name which
the formula will perform operations on. -
'formula’ is a numeric or string expression usually
involving the 'dummy variable(s)' on the left side
of the equals sign. : o

The DEF statement lets you create your own function. Once you
have defined the operations your function will do, all you have
to do is call the new function by name and the operations will
be automatically performed. To call it by name, after it has
been defined with the DEF statement, simply reference the
*function name' in an expression. You can use it exactly as you
might use one of the built-in functions, like SIN, ABS and
STRINGS.

The type of variable used for function name determines the type
of value the function will return. For example, if 'function

name' is an integer variable, then that function will return an
integer even if the data used in the function are real numbers.

You may pass any data with the same type of value to the 'dummy
variable'. Furthermore, you may use the same variable name as
the 'dummy variable' in your program without the 'dummy
variable' interfering with your program variables.

Examples

DEF R(A) = INT(RND(O) * (A) + 1)

This statement defines a function which returns a random whole

number between 1 and A. The value for A is passed in a
statement using R such as this:

Y = R(X)

Radie Shaek

PAGE 6 - 54

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

If X equals 10, a random whole number between 1 and 10 will be
assigned to Y.

DEF SLS(X) = STRINGS(X, "-")

Defines the function names SL$ which returns a string of hyphens
X characters long. The value for X is passed in a statement
using SL$ such as:

PRINT SL$(30)

Which prints a string of 30 hyphens.

DEF DIV(X,Y) = SQR(X)/SQR(Y)

Defines a function named DIV which divides the square root of X
by the square root of Y. It can be used like this:

PRINT DIV(100, 25)

Which prints 2.

Sample Programs

8@ REM ®#%¥% SAMPLE PROGRAM #1 DEMONGTRATING DEF ##%
P60 REM

188 DEF DOURLE(N) = N % 2

11@ PRINT "INPUT A NUMBER"

128 INPUT X

138 PRINT DOUBLE(X)

148 GOTO 110

R
INPUT A NUMBER
7 ES

50
INPUT & NUMBER
778

156

Radie fhaek

PAGE 6 - 55

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
8@ REM *#¥% SAMPLE PROGRAM #X DEMONSTRATING DEF ##%
@ REM
1B DEF SOUND(X) = 1@87 + SeR(Z273 + X) / 1&.52

11@
1:6
136
14@

#RLJ
INPUT
7 63

PRINT "INPUT AIR TEMPERATURE IN DEGREES CELSIUS"

INPUT T

PRINT "THE SPEED OF SOUND IN AIR OF"3: T3 "DEGREES CELSIUS IS
PRINT SOUND(T)s "FEET PER SECOND."

AIR TEMPERATURE IN DEGREES CELSIUS

THE SPEED OF SOUND IN AIR OF 43 DEGREES CELSIUS IS

13848,

11 FEET PER SECOND.

ETOP LINE 148

Radio fhaek

PAGE 6 - 56

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

DELETE
Delete Record From Disk File

DELETE #flle-unlt, KEY
‘~'f11e—un1t'q, n _thne

. 'file- nlt' a531gned when the flle was:ﬁ*-;
opened . -

'KEY record spec1f1es whlch record is to -
be deleL d; for ISAM records, record' .

. is a strlng expre331on, for dlrect—acceSSQa?ef“],
"ﬂ“g;records,ylt is a numerlc express;on.,__;““*" .

This statement deletes a record from a disk file. After a
record has been deleted, it is unreadable.

Examples

DELETE #1, KEY=2
Deletes the 2nd record in file-unit #1.
DELETE #A%, KEY=NAMESS

Deletes in file-unit A% the ISAM record with a key matching the
value of NAMES.

DELETE #START% + INC%, KEY=RECORD$%
Deletes in file-unit START% + INC% the record numbered as
RECORD%.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 57

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-= FUNCTION =--

DIG
Compute Number of Numeric Characters

DIG(string) - ..
'string’ is a‘q ring constant or a string variable.

DIG computes the number of numeric characters in the 'string'.
It will quit searching for numeric characters as soon as it hits
a non-numeric character. For example, in DIG("16A5"), DIG will
quit counting numeric characters when it reaches the A, since A
is non-numeric, and will return the current total, 2.

DIG treats blanks, signs, decimals, and exponents as numeric
characters.

Examples

PRINT DIG("1.2E5")
Prints 5
PRINT DIG("33 44")
Prints 5. (The blank is considered part of the numeric field).
A = DIG("-32")
Prints 3.
X = DIG(BS$)
Assigns the number of numeric characters in B$ to X.
PRINT DIG("B5")

Prints 0. (DIG quits searching for numeric characters after it
reads the non-numeric character, B.)

PRINT DIG("5B324")

Radiie Shaelk

PAGE 6 - 58

MODEL I/III COMPILER BASIC BASIC KEYWORDS

) TRS-80™

Prints 1.

Sample Program
188 REM ##% DEMO OF DIG FUNCTION TO EDIT A STREAM OF DATA #%%
118 REM
128 REM T4 CONTAINS THE INPUT STREAM
130 REM MAXPENL CONTAINS THE LENGTH OF THE INPUT STREAM
148 REM PENY FOINTS TO THE CURRENT START-EDIT POSITION

158 REM CRNTH CONTAING THE CURRENT STRING TO BE EDITED
168 REM VLULEN I8 THE LENGTH OF THE FIRET MUMERIC FIELD

173 REM & FERO LENGTH INDICATES & NON-NUMERIC FIELD
188 REM Vi.U VALUE OF THE FIRST NUMERIC FIELD
193 REM

200 DIM Tebas CRNTH64

218 PRINT "ENTER A STREAM OF NUMBERSs SEFARATED BY COMMAS®
220 LINE INPUT T8

230 MAXPSNY = LEN(T$)

240 PHENZ = 1

258 CRNT$ = SEG$(T$s PENYL)

260 VLULENZ = DIG(CRNT$)

270 IF VLULENZ = B THEN 308

286 VLU = VAL (CRNTS)

298 PRINT "FOUND THIS NUMBER: "3 VLU

308 PBNY = PSNZA + VLULENS + 1

F1@ IF PGBNZ > MAXPENZ THEN PRINT & GOTO 1@
J2@ GOTO 256

#RU

ENTER & STREAM OF NUMBERSs SEPARATED BY COMMAS
7 Bs 4562934589
FOUND THIS NUMBER:
FOUND THIS NUMBER:
FOUND THIS NUMBER:
FOUND THIS NUMBER: 34
FOUND THIS NWUMBER: 89

B SR
LA
o

PAGE 6 - 59

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80 ™

~=- STATEMENT --

DIM

Define String Variables and Arrays

DIM variable list . - .
'variable list' can consist of the following
‘ separated by commas: .-
strlng variable length .
'string variable' is any valld strlng~j
variable name ; ‘
'1ength' is an integer constant specrfylng
the maximum number of characters ‘
in string variable ;
array string 1ength(subscr1ptl, subscrlptZ)
'string length' is the length of each
- element in a string array. If omltted,
each element w1ll be stored as 255 ;
characters. strlng lengtr' 1s omltted
in numerlc arrays. ~
'array' is any valld varlable name ‘ ;
'subscriptl' and 'subscript2' are 1nteger
constants specrfyrng the maximum
number of subscrlpts in that dlmen31on
of the array. If subscript2 is
omitted, it is a single dimensioned
array. ‘ ~ .

Note: the lowest‘élement;in a dimension is always 0.

This statement defines the length of string variables and
arrays.

Defining String Variables

In Compiler BASIC, each string variable is stored according to
the length specified in the STRING statement. If you do not

have a STRING statement in the program, each string variable is
stored as if it contains 255 characters.

To override this, you may use DIM to specify the length of a

=

PAGE 6 - 60

MODEL I/III COMPILER BASIC BASTIC KEYWORDS

t}@@

particular string variable name. For example:
DIM NAMES$10
allots 10 characters for NAMES.

Defining Arrays

An array is a way of storing an entire list of data under one
variable name. Each data element is identified by one or two
subscripts. If each data element in an array contains only one
subscript, it is called a single dimensioned array; if it
contains two subscripts, it is a two-dimensioned array. No more
than two dimensions are allowed in Compiler BASIC.

All arrays must be defined with a DIM statement before they can
be used in the program. For example:

DIM A(2)

Allots room in memory for an array named A which can contain up
to 3 numeric data elements (0,l1,and 2). For example, each of
these subscripted variables could be assigned:

A(0) = 3.5
A(l) = 40000
A(2) = 5.15

A double dimensioned array is defined in this manner:
X(1,1)

This allots room for a double dimensioned array named X which
can contain up to 2 numeric data elements in the first dimension
and 2 numeric data elements in the second dimension. This array
might be programmed to contain:

X(0,0)
X(1,0)

07

25.1 X(0,1) = 13
= 32.6

22.2 X(1,1)

o

Arrays may be integer or string with the proper type declaration
tag. A string array will allot 255 characters for each data
element unless the string length is defined. For example:

AS$(10)

Allots room for an array named A$ with up to 11 string data
elements. Memory is set aside for each of the 11 data elements

Redhe 4

PAGE 6 - 61

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

to contain 255 characters for a total of 255x11=2805 characters.

A$5(10)

This also allots room for an array named A$ with up to 11 string
data elements. However, in this array, each element may contain
only 5 characters for a total of 5x11=55 characters.

Examples

DIM A(100), BS$S5, C%(9,9)

The numeric array A is defined with 101 elements, and C% is
defined containing 100 (10 * 10) elements. The string B$ can
contain no more than 5 characters.

DIM DATAS$3, DAVISS$6, DVISL

The strings DATAS$, DAVISS, and DVIS$ are defined containing 3, 6,
and 1 characters respectively.

DIM M$1(200), C$2(100)

The array M$ is defined to contain 201 one-character string data
elements. Array C$ may contain 101 two-character string data
elements.

Sample Programs

88 REM *#% SAMPLE PROGRAM #1 DEMONSTRATING DIM *%%

9@ REM

10@ DIM AY(10,10)

112 PRINT "SALES DATA WILL BE STORED IN ARRAY AY AS FOLLOWS®
120 PRINT CHR$(Z8): CHR$(31) : PRINT " "s "MONTH 1"s "MONTH 2" "MONTH
138 FOR X = 1 TO 4

14@ PRINT : PRINT "ITEM "3 Xs

150 FOR Y = 1 TOo 3

160 READ AZ(XsY)

170 PRINT AZ(XsY)s

180 MEXT Y

Radie fhaek

PAGE 6 - 62

“’SII

MODEL I/III COMPILER BASIC

TRS-80™

198 NEXT X

200 PRINT: PRINT "INPUT ITEM # AND MONTH #*

210 INPUT XsY

BASIC KEYWORDS

220 PRINT "SALES DATA FOR ITEM "3 X3 "AND MONTH"S3

238 GOTO Z00

240 DATA 34+563+55366933522:11599:88577566355

MONTH 1
ITEM 1 34
ITEM =2 bbd
ITEM 3 11
ITEM 4 77

INPUT ITEM # AND MONTH #
73

73

SALES DATA FOR ITEM 3 AND

MONTH 2
&3
33
99

b6

MONTH 3 I8 :

Radie fhaek

PAGE 6 - 63

MONTH 3

55

88

33

AZIXsY)

MODEL I/III COMPILER BASIC BASIC KEYWORDS

18 REM ¥#% GAMPLE PROGRAM #2 DEMONSTRATING DIM %
S REM

3B PRINT CHR$(ZE)5 CHRE(31)

4@ DIM L$(1@s3)

5@ OM o= @

6@ PRINT *MEMBERSHIF ARRAY IS DIMENSIONED FOR UP TO 1@ MEMRERS®
78 M= Mo+ 1

8@ PRINT "INPUT NAMEs ADDRESSs AND PHONE # OF MEMBER "1 M
S@ FOR X = 1 TO 3

1B@ INPUT L$(MsX)

110 NEXT X

120 IF M = 1@ THEN 160

130 PRINT IS THERE ANOTHER MEMBER (Y/N)®

140 INPUT A%

150 IF A% = "Y" THEN 7@

160 PRINT: FRINT "THE LIST I8 STORED AS FOLLOWS : *

178 PRINT "NAME"s "ADDRESS"s "PHONE"

180 PRINT STRINGS(&64s "=')3

199 FOR T = 1 TO M
0B FOR J = 1 TO 3
210 PRINT L#(IsJ)»
R0 NEXT J
3@ PRINT
40 NEXT I

MEMBERSHIP ARRAY I8 DIMENSIONED FOR UP TO 1@ MEMBERS
INPUT NAME: ADDRESSs AND PHONE # OF MEMBER 1

7 SANDY WILLIAMS

7 3266 ASH PARK

7 EB4—4447
IS THERE ANOTHER MEMBER (Y/N)
7Y

INPUT NAMEs ADDRESSs. AND PHONE # OF MEMBER =2
7 LINDA GORDON

7 3587 HARRIBON

7 2670459

IS THERE ANOTHER MEMBER (Y/N)

7 N

THE LIST I8 STORED AE FOLLOWG =
NAME ADDRESS PHONE

e 40ore oses vents ey Somen Ssas ke srete aeeen Shiss PSS SIS SREVS SeRRD Sa9me SHAED ISLSD BHLED 00004 £320% BrSER 48044 $0454 Shech 1404 4004 Leest $eics PRSI OISO R4 FRied Seoey A0S 004 Fieow Fass Seoed NTOS S4e08 BEeed SERKY E4e0S 4ared Bhreo FRess S9RS0 1AAFS S4440 SHVSD BOSSE S54e0 LEree SORFY SR4SE SHRRE MHLNE SHINS Srats Sveme bemes GRere Suare

SANDY WILLIAME 3200 ASH PARK 28B4-4447
LINDA GORDON 3507 HARRISON 2670459
STOP LINE 240

Radio fhaek

PAGE 6 - 64

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

END
Terminate Program Compilation

END

END terminates compilation of your main program. This means,
when you are RUNning or COMPILEing a program, the Compiler will
quit compiling and assume the program has ended as soon as it
encounters an END statement. Since this is different from the
way END works in the BASIC Interpreter, it is important that you
remember not to use END in the middle of a program if you want
to use the lines following the END statement. Use STOP for that
purpose.

Some versions of BASIC require END as the last statement in a
program. In Compiler BASIC this is optional. However, when
using a subprogram, you must put an END statement as the last
statement in your main program. Otherwise, BASIC will not be
able to separate your main program from the subprogram.

Note: Also see SUB, SUBEND, CALL, and the chapter on Segmenting
Programs.

Example

END

This statement "turns off" the compiling of your program. BASIC
then assumes there are no more main program lines following this
statement.

Sample Program

Radie fhaek

PAGE 6 - 65

MODEL I/III COMPILER BASIC BASIC

@@

KEYWORDS

1@
=@
30
4@
10@
11@
12@
130

PRINT "EXECUTING THE MAIN PROGRAM"

CALL "SUBPROG"s "THIS IS5 FROM THE MAIN PROGRAMY
PRINT "BRACK TO THE MAIN PROGRAM"

END

SUB "GUBPROG": A%

PRINT "NOW IN THE SURPROGRAM®

PRINT A%

SUBEND

Radie Shaek

PAGE 6 - 66

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

== FUNCTION =--

EOF
Notify if End of File

EOF(#flle—unlt) . . ~
_ 'file-unit' is a numerlc expre551on spec1fy1ng
_a file opened for sequential access.

This function tells whether the end-of-file (EOF) has been
reached during sequential input. If the EOF has been reached,
it returns a value of -1 (TRUE). Otherwise, it returns a value
of 0 (FALSE).

Examples

IF EOF(#1) = -1 THEN CLOSE #1l .
If the end of file has been reached in file-unit 1, the file is
closed.

STATUS% = EOF(#A%)
File-unit A%'s EOF status (-1/TRUE or 0/FALSE) is stored in
STATUS%.

Sample Program

See Chapter 4.

Radie fhaek

PAGE 6 - 67

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80®

—-— FUNCTION --

ERR
Get Error Code

ERR

ERR returns the code of the error that happened in the program.
It is normally used inside an error-handling routine accessed by
ON ERROR GOTO. The section on error codes in the Appendix gives
the error code for each error.

Examples

IF ERR = 7 THEN 1000 ELSE 2000

If the error is an Out of Data error (code 7) the program
branches to line 1000; if it is any other error, control will
instead go to line 2000.

Sample Program

8 REM ##% SAMPLE PROGRAM DEMONSTRATING ERR #®%

9% REM

180 ON ERROR GOTO 15@

11@ DATA 1. 2

120 READ As Bs C

13@ PRINT "A = "5 A3 " B = "3 Bs " C= "3 C

140 STOP

158 IF ERR < 7 THEN ERROR ERR

160 PRINT "YOU DON?T HAVE ENOUGH DATA FOR ALL THE VARIABLES"
1768 GOTO 13@

#RU
YOU DON'T HAVE ENOUGH DATA FOR ALL THE VARIABLES
A= 1 B= 2 €= 1.02129 E+33

STOP LINE 140

PAGE 6 - 68

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—— STATEMENT --

ERROR
Simulate Error

ERROR code ; -
'code' is a numeric expression defining the
error code ~

An ERROR statement in your program causes BASIC to act exactly
as if the specified error had occurred. You can specify an
error with its error code. The Appendix has a listing of error
codes and their meanings.

ERROR is primarily used in ON ERROR GOTO routines: either for
simulating the error that occurred or for testing the routine.

Examples

ERROR 7

When your program reaches this line, an Out of Data error (code
7) will "occur”, and the Computer will print a message to this
effect.

IF ERR <> 5 THEN ERROR ERR

This line could be in the error handling routine initiated by ON
ERROR GOTO. It tells the Computer that if the error which
caused it to come to this routine was not an Input Syntax error
(code 5), then print the appropriate error message.

Sample Program
106 INPUT N
116 ERROR N

#RU
7 N
INPUT SYNTAX ERROR LINE 100

Radie Shaek

PAGE 6 - 69

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

—-— FUNCTION --

EXP
Compute Natural Exponential

EXP(number)~p, - ..
'number' is a numeric expression.

EXP returns the natural exponential of the 'number', that is, e
to the power of 'number'. This is the inverse of the LOG
function; therefore, X = EXP(LOG(X)). The result is always a
real number.

Examples

— - —— ————

H = EXP(A)
Assigns the value of EXP(A) to H.
PRINT EXP(-2)
Prints the value .135335.
E = (Gl + G2 - .07) * EXP(.055 * (Gl + G2))

Performs the required calculation and stores it in E.

Sample Program

o o o - - o - — ——

1® PRINT "INPUT A NUMBER"

20 INPUT N

3% PRINT "E RAISED TO THE N POWER I&"3 EXP(N)
4@ GOTO 10

#RU

INPUT A NUMBER

7 56

E RAISED TO THE N POWER IS5 2.09166 E+24

Radio fhaek

PAGE 6 - 70

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- FUNCTION =--

EXP10
Compute Base 10 Exponential

EXP10 (number)

~ 'number' is a numeric expression

EXP1l0 raises 10 to the power of 'number'. As the inverse of
LOG1l0, X=EXP10(LOGl0(X)). The result is always a real number.

Examples

s e e o o o e

X = EXP1O(Y)

Raises 10 to the Y power and assigns that value to X.
PRINT EXP10(3)

Prints 1000.
X = (A + B) + EXP10(A)

Performs the calculation and records the result in X.

Sample Program

1@ INTEGER R

20 PRINT "TaABLE OF RANDOM NUMBERS ... "

3@ FRINT "ENTER MAXIMUM MUMBER OF DIGITS YOU WANT (UP TO 4)"
40 INPUT L

5@ X o= EXPI6BL)Y ¢ R = X — 1

&8 FOR I = 1 TO 100

7o PRINT INT(RND(@) * R)»

BO NEXT 1

90 PRINT: GOTO 1@

Radioe fhaek

PAGE 6 - 71

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-— STATEMENT --

EXT
Define Address of External Program

EXT subname=address ‘ ‘ .
'subname'’ is a 1-6 character name for the external'
subroutine ‘
'address' is the memory address, in hexadecimal
or integer notation, where the external subroutlne
originates.

You may interface an external object code program with your
BASIC program by using EXT. EXT names the external subroutine
and defines the memory address where the subroutine originates.
To call the routine, use CALL.

Note: See the chapter on Segmenting Programs.

Examples

EXT SUBPROG=&E000

the external routine named SUBPROG originates at the memory
address of hex E000.

Sample Program

See the chapter on Segmenting Programs.

Radie S

PAGE 6 - 72

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

-= STATEMENT --

FOR/NEXT
Establish Program Loop

FOR variable = initial value TO final value STEP
increment . ‘ .
'variable' is any numeric variable name;
'variable' is optional after NEXT ‘ ;
'initial value', 'final value', and 'increment'
~_are numeric constants, variables, or ‘
expressions. ‘ ‘ ~ ‘
STEP 'increment' is optional; if STEP 'increment'
is omitted, a value of 1 is assumed. .

FOR...TO...STEP/NEXT opens a repetitive loop so that a sequence
of program statements may be executed over and over a specified

number of times.

-10 FOR X=1TO 5

ﬁ15‘: FOR Y=1T0 3

e

- 20 NEXT Y

5 times
3 times

.30 NEXTX

When BASIC executes the FOR statement for the first time, it
sets the 'variable' to '"initial value'. Then 'variable' is
compared with 'final value'. If 'variable' is greater than

,‘

Radhe .

PAGE 6 - 73

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

'final value', BASIC completes the loop and goes to the
statement following NEXT. (If 'increment' is a negative number,
the loop ends when 'variable' is LESS than 'final value'.)

If 'variable' has not yet exceeded 'final value' BASIC
continues executing the next statements until it encounters
NEXT. At this point, BASIC goes back to FOR and increments the
'variable' by the amount specified in step 'increment'. (If
'increment' has a negative value, the 'variable' is actually
decremented.) STEP 'increment' is often omitted, in which case
BASIC uses 1 as an increment. BASIC then repeats the whole
process, comparing 'variable' with ‘'final value’'.

Examples

FOR X =1 TO 3

Sets up a loop which will be repeated 3 times: when X is 1, 2,
and 3. (Since no STEP increment is specified, an increment of 1
is used.)

This loop is closed by the following statement:

NEXT X

FOR I = 2 TO 6 STEP 2
Sets up a loop to be repeated 3 times: when I is 2, 4, and 6.
FOR I = 8 TO 5 STEP -1

Sets up a loop to be repeated 4 times: when I is 8, 7, 6, and
5.

Both of the loops above are closed by the statement:

NEXT I

Sample Programs

o ey o o -

Radge St

PAGE 6 - 74

MODEL I/III COMPILER BASIC

TRS-80™

BASIC KEYWORDS

80 REM #¥% SAMPLE PROGRAM #1 DEMONSTRATING FOR/NEXT ###

@ REM

1868 FOR I = 18 TO 1 STEP -1

110 PRINT I3

120 NEXT I

#RU

18 9 8 7 &6 5

2 1 8TOP LINE 120

e

80 REM ®#&% GAMPLE PROGRAM DEMONSTRATING FOR/NEXT ##%

?@ REM

1@ FOR I = 1 To 3
116 PRINT "OQUTER LOOP"

1=0 FOR J =

130 PRINT
140 NEXT J
13@ NEXT I

#RU

OUTER L.OOP
INNER LOOP
INNER LOOP

QUTER LOOP
TNNER LOOP
IMNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

STOP LINE 15@

INNER LOOP"

Radie fhaek

PAGE 6 - 75

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-= STATEMENT --

GOSUB
Go to Specified Subroutine

GO SUB line number
GOSUB line number

GO SUB or GOSUB (the space is optional) transfers program
control to the subroutine beginning at the specified line
number. Like GOTO, GOSUB is an unconditional or automatic
program branch which may be conditional if it follows a test
statement.

RETURN ends the subroutine by sending program control back to

the line immediately following the GOSUB statement. All
subroutines are ended by a RETURN statement.

Note: Also see RETURN.

10~

20 -

—iss GOSUB 80
80 — ‘

100 RETURN

/*4‘~;;~;_4,?’"”

Rade Shaek

PAGE 6 - 76

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Examples

GOSUB 1000

When this line is executed, control will automatically branch to
the subroutine at 1000.

IF A$ = "YES" THEN GOSUB 2000

Here, GOSUB is a conditional branch. If the condition is true,
then control will branch to the subroutine at line 2000.
However, if the condition is false, the program will immediately
advance to the next line. GOSUB 2000 will be ignored.

Sample Program

8@ REM *¥#% SAMPLE PROGRAM DEMONSTRATING GOSUR #%%
9@ REM

108 GOSUBR 120

11B PRINT "BACK FROM THE SURROUTINE" @ STOP

1280 PRINT "EXECUTING THE SUBROUTINE®

130 RETURN

#RU

EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE
STOP LINE 110

Radie fhaek

PAGE 6 - 77

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-~ STATEMENT --

GOTO
Go To Specified Line Number

N elo Tokline‘nﬁmber}
kGOTO line number

GO TO or GOTO (the space is optional) transfers program control
to the specified line number. Used alone, GOTO results in an
unconditional or automatic branch. However, a test may precede
the GOTO to effect a conditional branch.

Examples

GOTO 100

When this line is executed, control will automatically be
transferred to line 100.

IF A = 1 THEN PRINT "CORRECT": GOTO 50

In this statement, GOTO is used as a conditional branch. If A =
1, the Computer will print "CORRECT" and transfer control to
line 50. However if A does not equal 1, control will drop to
the next program line. GOTO 50 will be ignored.

Sample Program

18 REM *#%% SAMPLE PROGRAM DEMONSTRATING GOTO ##%
20 QOTO 46
25 PRINT "LINE Z5°
27 8TOR
30 PRINT "LINE 30"
35 GOTO 25
400 PRINT "L INE 4@"
5@ GOTO 36
®
Radie fhaelk

PAGE 6 - 78

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-~ FUNCTION --

HEXS
Compute Hexadecimal Value

'HEXS$ (number) - -
~ 'number' is a numeric expression in the range
s o st -

HEXS$ is the inverse of the HVL function. It returns a string
which represents the hexadecimal value of the 'number'. Since
the hexadecimal value is returned as a string, it cannot be used
in a numeric expression. You cannot add, subtract, multiply or
divide hex strings. You can concatenate them, though.

The hexadecimal string returned represents the value of the
stored 'number'. Since the 'number' is an integer, it is stored
in two's complement notation. HEXS$(-1) returns the hexadecimal
string "FFFF", since this is the way -1 is stored in two's

complement notation. An explanation on the storage of integers
is in the Programmers Information Section.

Examples

PRINT HEX$(30), HEXS$(50), HEXS$(90)
Prints the following strings:

O001lE 0032 005A

PRINT HEX$(-1), HEXS$(-16), HEXS$(-32768)
Prints the following strings:

FFFF FFFO0 8000

Y$ = HEXS$(X/16)

Y$S is the hexadecimal string representing the integer quotient

Radie fhaek

PAGE 6 - 79

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

X/16.

Sample Program

o s e v o o s

8@ REM ##% SAMPLE PROGRAM DEMONSTRATING HEX$ %%
8 REM

100 PRINT "INPUT & DECIMAL NUMBER FROM 1 TO 32767"
116 INPUT DEC

120 PRINT "HEXADECIMAL VALUE IS "3 HEX$(DEC)

130 QOTO 1686

*#RU

INPUT A DECIMAL NUMBER FROM 1| TO 32767
7 456.89

HEXADECIMAL VALUE I8 @1Ce

Radie Sfhaek

PAGE 6 - 80

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION --

HVL
Convert Hexadecimal String

HVL(string) . ;
'string’' is a string constant or a string variable.

HVL is the inverse of the HEX$ function. It returns the integer
value of a hexadecimal string. Since integers are stored in
two's complement notation, hexadecimal values over 7FFF will
return negative integers.

Note: An explanation on the Storage of Integers is included in
the Programmers Information Section

Examples

- o v s v

PRINT HVL("7FFF")
Prints 32767.
PRINT HVL("8000")
Prints -32768.
PRINT HVL("4C IS THE CODE FOR L")
Prints 76. (HVL read the hexadecimal number "4C" and then
stopped its search since the next character was not a

hexadecimal character.)

H = HVL("F")

Assigns the value 15 to H.

Sample Program

—————— — - — —— s t—

Radie fhaek

PAGE 6 - 81

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

86 REM #¥% SAMPLE PROGRAM DEMONSTRATING HVL #u#%
% REM

i@ PRINT "TYPE A HEXADECIMAL NUMBER"

113 INPUT &%

120 N = HVL(A%)

136 IF M < @ THEN D = N + 43336 ELSBE D = N

146G PRINT "THE INTEGER REPRESENTATION FOR "3 A%s " I8 "1 N
15@ PRINT

16@ PRINT A$s: " CONVERTED TO A DECIMAL NMUMBER IG"3 D
1700 PRINT

186 GOTO 186

#RU

TYPE A& HEXADECIMAL NUMBER

T TFFF

THE INTEGER REPRESENTATION FOR 7FFF I& 32767

TFFF CONVERTED TO A& DECIMAL NUMBER I8 32747

Radio fhaek

PAGE 6 - 82

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT --

IF...THEN. . .ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or
line number
'test' is one or more relatlons connected by logical
operators
‘relation' is two numeric or two strlng
expressions separated by a relational
operator
'statement' is one or more BASIC statements
separated by colons. A line number may
be substituted for 'statement'.
ELSE statement is optlonal ~

Note that 'statement’® must be executable, €.9.,
not a REM or DIM statement.

IF...THEN...ELSE tests the 'relation' to see if it is true. If
it is true and there is more than one relation separated by
logical operators, BASIC will continue testing each relational
and logical operation in the statement.

If the 'test' returns a true result, the statement or
statements following THEN will be executed. If the test returns
a false result, control will jump to the statement or statements
following ELSE, or, if ELSE is omitted, to the next program
line.

The conditional statement GOTO 50 may be replaced by simply a

line number.

Examples

IF X > 127 THEN PRINT "OUT OF RANGE" : STOP

If X is greater than 127, the statement will be printed and
program execution will stop. If X is not greater than 127,
control will jump down to the next program line, skipping the

Radie fhaek

PAGE 6 - 83

MODEL I/III COMPILER BASIC BASIC KEYWORDS

PRINT and STOP statements.
IF X > 0 AND Y <> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value
X + 180. Otherwise, control will pass directly to the next
program line, skipping the THEN clause.

IF A < B THEN PRINT "A < B" ELSE PRINT "B <= A"

If A is less than B the Computer prints the fact and then
proceeds down to the next program line, skipping the ELSE
statement. If A is not less than B, the Computer jumps directly
to the ELSE statement and prints the "B <= A". Then control
passes to the next statement in the program.

IF A$ = "YES" THEN 210 ELSE IF A$ = "NO" THEN 400 ELSE 370.

If AS is YES then the program branches to line 210. If not, the
program skips over to the first ELSE, which introduces a new
test. If A$ is NO then the program branches to line 400. If AS
is any value besides NO or YES, the program skips to the second
ELSE and the program branches to line 370.

IF A > .00l THEN B = 1/A A A/5 : ELSE 1510

oo

If the value of A is greater than .001, then the next two
statements will be executed, assigning new values to B and A.
Then the program will drop down to the next line, skipping the
ELSE statement. But if A is less than or equal to .001, then
the program jumps directly over to ELSE, which then instructs it
to branch to 1510. Note that GOTO is not required after ELSE.

Sample Programs

86 REM *##% SAMPLE PROGRAM #1 DEMONSTRATING IF/THEN ###%
@ REM

128 PRINT "INPUT THE NUMBER @ OR 1"

11@ INPUT N

120 IF N = @ OR N = 1 THEN STOP ELSE PRINT "NOT A BINARY DIGIT"

*#RU
INPUT THE NUMBER 8 OR 1
71

STOP LINE 120

Radie fhaek

PAGE 6 - 84

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

80 REM ##% SAMPLE PROGRAM #2 DEMONSTRATING IF/THEN %%

P REM

190G PRINT "DO YOU WANT TO TEST THE IF/THEN SBTATEMENT®

11@ INPUT A%

120 IF A% = "YES" THEN PRINT "YOU INPUT YES" & GOTO 106&: ELSE IF A% =
TNO® THEN STOP ELSE PRINT "INPUT YES OR NO' @ GOTO 11@

#FJ

DO YOU WANT TO TEST THE IF/THEN STATEMENT
7 YES

YOU INPUT YES

DO YOU WANT TO TEST THE IF/THEN STATEMENT
7 NO

ETOP LINE 128

1@ REM #¥¥% IF. .. THEN. . . ELSE STATEMENT ##%
2@ OINPUT PROMPT="YES OR NO (Y/N)?7 "3 R%
2B IF R$ = "Y' THEN 408
B2 IF R = "N" THEN 5@ ELSE 2@
4 PRINT "THAT’S BEING POSITIVE'®
45 STOP
5@ PRINT "WHY &0 NEGATIVE?®
55 STOP
RUN
YES OR NGO (Y/N)7 Y
THAT’S BEING POSITIVE!
5TOP LINE 45
#RUN
YES OR NO (Y/N)Y7 N
WHY S0 NEGATIVEY
STOP LINE 55

Radie fhaek

PAGE 6 - 85

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80C

—- FUNCTION --

INKEYS
Get Keyboard Character if Available

INKEYS

Returns a one-character string from the keyboard without the
necessity of having to press ENTER. If no key is pressed, a
null string (length zero) is returned. Characters typed to
INKEYS are not echoed to the Display.

Example

AS$ = INKEYS

When put into a loop, the above program fragment will get a key
from the keyboard and store it in A$. 1If the line above is used
by itself, when control reaches it and no key is being pressed,
a null string ("") will be stored in AS.

Sample Programs

1@ REM #%% INKEY$ FUNCTION 3%

20 DIM Gl

30 PRINT CHR$(Z2B)s; CHR#$(31)

40 PRINT "ECHO PROGRAM - TYPE ANY TEXT KEY AND IT WILL BE ECHOED"
5@ A% = INKEY$

&0 IF A% = """ THEN 5@
65 IF A% < " " THEN 90
78 PRINT A%

8@ GOTO 50

S8 IF A% = CHR$(@1) THEN &TOP
1@@ PRINT " CONTROL CHARACTERS ARE IGNORED - PRESS <BREAK> TO aUIT"
118 GOTO 56

ECHO PROGRAM -~ TYPE ANY TEXT KEY AND IT WILL BE ECHOED
DCONTROL. CHARACTERS ARE IGNORED ~ PRESS <BREARK: TO QUIT

Radie fhaek

PAGE 6 - 86

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-—- STATEMENT --

INPUT
Input Data

INPUT LENGTH number,kPROMPT strlng, varlable—listk

'string' is a string constant or a strlqg‘variable;
PROMPT=string; may be omitted.

varlable—llst' is a list of variables, with a comma
after each but the last. The variable-types
(string, integer, real) should match the data
to be input. ~

‘number' is an 1nteger value 1- 255 spec1fy1ng the

maximum number of characters to 1nput, If omitted,
default is 255. ‘ . ~

LENG"H~number lS optlonal

This statement inputs data from the keyboard.

When executed, INPUT displays the prompt string or a question
mark. When you press <ENTER>, INPUT edits the input stream
until it satisfies the input ‘'variable-list'. If the expected
number of data items are found, INPUT is complete. If more are

needed, INPUT displays another question mark and waits for
further input.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.

shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

<= Backspaces the cursor and erases character.

<BREAK> Halts the INPUT and gives control to the <BREAK>
handler.

All other keys are accepted as data for the input line.

Examples

Raehe fhack

PAGE 6 - 87

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

INPUT A, B, C, D

Inputs values for the four variables listed.
INPUT AS

Inputs a string value for AS

Sample Program
10 REM **% TNPUT STATEMENT **%*
20 DIM NAMES25
30 PRINT "ENTER DATA LIKE THIS: name, age"
40 INPUT NAMES, AGE$%
50 PRINT: PRINT "HERE'S HOW THE DATA WAS EVALUATED:"
60 PRINT "NAME: '"; NAMES; "'"
70 PRINT "AGE: ", AGE%; "'"
80 PRINT
90 GOTO 30

Input Stream Edit Process

Leading spaces are always ignored. Beyond that, the editing
process used depends on whether the target variable is string or
numeric.

String Input

The string field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If a comma
is encountered before any non-space characters, the target
variable is given the null-string value, and input continues
with the next target variable (if any). If a carriage return is
encountered before any non-space characters, INPUT displays a
new input buffer and waits for more data for the same target
variable.

There is a special case when the first non-space character is a
double—-quote '"'. This causes all subsequent characters,
including commas, to be accepted into the string, up to the next
un-paired quote or carriage return (<ENTER>).

To include a double—-guote in a quoted string, use paired
double-quotes.

For example, the table below describes the result of the

Radie fhaek

PAGE 6 - 88

MODEL I/III COMPILER BASIC

statement

INPUT X$

TRS-80™

BASIC KEYWORDS

under various conditions (<ENTER> represents a carriage return;

w~n

represents a leading or trailing blank space and is used

only where necessary for illustration or emphasis.)

Data stream

J.D. POWERS <ENTER>
“T"7J.D. POWERS™™7,
FIRST, SECOND, THIRD <ENTER>

Result in XS

'J.D. POWERS'
'J.D. POWERS !
'FIRST'

;, FIRST <ENTER> "' (null string)

HE SAID "HI" <ENTER> '"HE SAID "HI"'

HE SAID "HI, JACK" <ENTER> "HE SAID "HI'

" J.D. POWERS " <ENTER> ! J.D. POWERS !
"HE SAID ""HI""" <ENTER> 'HE SAID "HI"'

"HE SAID, ""HI, JACK.""" '"HE SAID, "HI, JACK."'

Numeric Input

The numeric field starts with the first non-space character, and
ends when a comma or carriage return is encountered. If the
comma is encountered first, the target variable is given a value
of zero, and input continues with the next target variable, if
any. If a carriage return is first, INPUT displays a new
question mark and waits for more data for the same target
variable.

Once a numeric field has been delimited, INPUT evaluates the
field. The following characters are valid in a numeric field:

Digits 0-9

Decimal point

E (Exponent suffix)

+ and - signs . .
Blank spaces (They are ignored.)

All other characters are invalid.

If an invalid character is encountered, input stops. The target
variable receives the value of the field up to that point, and
an error (INPUT SYNTAX ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form

Radie fhaek

PAGE 6 - 89

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):

— DIGIT P EXPONENT

o | =

Y
A

'digit' is one of the characters from 0 through 9.
'exponent' is a whole number from -64 to +63. The sign is
optional for positive values.

For example, the table below describes result of the statement

INPUT X$ under various conditions. (<ENTER> represents a
carriage return; "7" represents a leading or trailing blank
space and is used only where necessary for illustration or
emphasis.)

Data stream Result in X$
TT710077" <ENTER> 100
1 2 3 435, 12345
; 1L 2 3 4 5 <ENTER> 0
-1.2345 E5 <ENTER> -123450
+123450. E~5 <ENTER> 1.2345
100H <ENTER> 100 (Error #5)
1234/ <ENTER> 1234 (Error #5)
1..2 <ENTER> 1
..l <ENTER> 0
®
Redie fhaek

PAGE 6 - 90

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

1@ REM ##% INPUT STATEMENT #*#%%

20 DIM M5GH64

3 INPUT PROMPT = "TYPE IN A MESSBAGE: "5 MSGH

40 INPUT PROMPT="TYPE IN THREE NUMBERS: "3 N1ls NZs N3
5 PRINT "DATA IS STORED LIKE THIS®

H@G PRINT "7 "5 MBGH: "7 "

78 PRINT Nis NZs N3

8@ PRINT: GOTO 30

Radie Shaek

PAGE 6 - 91

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

INPUT from a disk file
Input Data From Disk File

Sequentlal access:
INPUT # flle—unlt varlable l¢St

Indexed sequentlal access-~ .
 INPUT ¥ file~unit, KEY key;fvariableflistjr‘

Direct access.k . .- ...
INPUT # file- unlt KEY =_record~number; variable—list

“’flle—unlt'; is a numeric expre551on spe01fy1ng the .
output file. The file-unit number is a531gned when
the file is opened. o
'variable-list' specifies the target varlables to
 receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuatlon '
after the last var1ab1e.~
'KEY=key' is used for :nput from 1ndexed sequentlal
access files. 'key' is a string expre351on ,
containing the sort key.
 'KEY=record-number' is used for 1nput from dlrect
access files. 'record-number' is a numerlc
expre551on spe01fy1ng the record number.

This statement inputs data from a disk file. The data should
have been written by an analogous PRINT to disk file statement.
The number and type of target variables should match the number
and type of values in the PRINT item-list.

The input stream edit process is like that of INPUT from the
keyboard.

Examples

INPUT #1; A, B, C, D

Radie fhaek

PAGE 6 - 92

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Inputs values for A, B, C and D from file-unit #1.
INPUT #2, KEY=NAMES: PAYRAT, EXEMPT%

Inputs values for PAYRAT and EXEMPT$% from the record indexed by
the contents of NAMES, from file-unit #2.

INPUT #3, KEY=RECORD%; PAYRAT, EXEMPT$%
Inputs values for PAYRAT and EXEMPT% from the direct-access
record specified by RECORD%, from file-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 93

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-—- STATEMENT --

INPUT USING
Input Formatted Data

INPUT USING LENGTH”number, PROMPT—strlng, var1a31eélist~
'string' is a strlng constant or strlng varlaole,, ;
~ PROMPT= str1ng,~mayfbe omltted,,a -

"image SpEleleS the format of the éata~ lt
. can be a line number referxlng‘to an 1mage
fstatenent, or a stang constant or strlng
variable contalnlng the 1mage speCLflers. -
'variable-list' is a list of one or more varlables,‘k,
with a comma afcer each but the last. The -
variable-types (string, integer, real)
~ should match the data to be input.
'number' is an integer spec1fy1ng the maXImum number
of characters to 1nput.
LENGTH= number lS optlonal. _Thekdefault Value‘lSr

INPUT USING 1nputs data from the keyboard accordlng to a
specified format--how many fields, how many characters in each
field, and which characters to skip over.

You specify the format with an image line--either contained on a
separate program-line, or in a string variable referenced in the
INPUT USING statement. Image lines contain special characters
indicating the positions and lengths of fields within the data.

When executed, INPUT USING displays the prompt or a question
mark. When you press <ENTER>, INPUT USING edits the data until
it finds enough fields to satisfy the input ‘variable-list'. If
the expected number of data fields are not found, INPUT USING
displays a new question mark and waits for more data.

Special Keys During INPUT USING

<ENTER> Terminates the line at the current cursor
position and begins input-stream editing.

shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.

<- Backspaces the cursor and erases character.

<BREAK> Halts the INPUT USING and gives control to the

<BREAK> handler.

Radie fhaek

PAGE 6 - 94

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

All other keys are accepted as data for the input line.

Image Lines for INPUT USING

If stored in a separate program line, image lines take this
form:
nnnnnb;image - . ~
nnnnnb' is the llne number,,followed by a blank space
';' marks the 11ne as a non-executable image line ;
‘image' is a sequence of characters defJnlng the image
- format, as follows: ;
'#' specifies a numeric or strlng character.
A sequence of N "#" characters represents a
numeric or strlng field of N characters.

You can also store the image inside a string variable. Simply
assign the appropriate image character sequence to the string
variable.

Examples

100 IMAGES = "######Ha4# HFFHF FHEFEEF HH44H"
110 INPUT USING IMAGES$, FIELD1S$, FIELDS, FIELD3, FIELDA4%

Inputs values for the four variables listed, using the image
contained in IMAGES.

100 ;##fds#s
110 INPUT USING 100, RATE

Inputs a value for RATE, according to the image statement in
line 100.

Sample Programs

100 REM *%% TNPUT USING **%*
110 DIM NAMES$25, IMAGES28
120 REM :———-25 character name---: nn

130 IMAGES = "#######44H# 4 HH4H4EHHHHHH4E #4"

140 PRINT "TYPE IN A LINE LIKE THIS (name, age)"
150 PRINT TAB(2); IMAGES

160 INPUT USING IMAGES, NAMES, AGE%

Radio fhaek

PAGE 6 - 95

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80®

170 PRINT: PRINT "DATA WAS EVALUATED LIKE THIS:"
180 PRINT "NAME: '"; NAMES$; "'"

190 PRINT "AGE: '"; AGEg%; "'"

200 PRINT: GOTO 140

The following program uses a separate image line:

100 PRINT "ENTER A NUMBER (UP TO 10 DIGITS)"
110 INPUT USING 120, A

120 ;###HR#HHH

130 PRINT "THE DATA WAS EVALUATED LIKE THIS:"
140 PRINT USING 120, A

150 GOTO 100

When you run the program, always input 10-digit numbers
(including sign, decimal point, exponent field, etc.).
Otherwise, the data evaluation will probably differ from what
you intended. For further details, read "INPUT USING Edit
Process."

INPUT USING Edit Process

Y s o St D e S a S) o S o e i Sl s o s T oty e

The ‘image' defines the fields which are passed to the standard
input evaluation routines. The image serves as a "mask", in
that only those characters aligned with "#" signs are used. For

example:
Image: HERGHAHAHE BAEHE"
Data: "MR. JONES 1.334567"
Resultant fields: "MR. JONES™" and "71.33"
("™" represents a blank space and is used only where necessary

for purposes of illustration or emphasis.)

String Input

All characters in the field are input to the target

variable--including leading and trailing spaces, commas and

quotes. There are no special delimiters.

For example, the table below describes result of the statement
INPUT USING AS$, S1$, S2§

under various conditions (""" represents a leading or trailing

blank space and is used only where necessary for illustration or
emphasis).

Radie fhaek

PAGE 6 - 96

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Result

AS$ (Image) Data S1s S2$

¥ hHddHadHEH ABCDEFGHIJK A CDEFGHIJ
#4 HHHHHEHE ABCDEFGHIJK AB DEFGHIJ
HhES HEHHE G-44 L-5 G-44 L-5~"~
$HEH HHH444 A,B,C,D,E A,B, +D,E,

FIRST SECOND F~~~~ g~~~

Numeric Input

The follow1ng characters are valid in a numerlc fleld.
Digits 0-9 ~
Decimal point
E (Exponent suffix)

+ and - signs ‘
~ Blank spaces (They are 1nterpreted as zeroes.)

If a comma is encountered in the input data, evaluation stops
and the current target variable receives the value of the field
up to that point. If there are additional target variables to
be filled, INPUT USING continues evaluation of the input line.
The evaluation continues at the first character following the
current image field.

All other characters are invalid. If an invalid character is
encountered, input stops. The target variable receives the
value of the field up to that point, and an error (INPUT SYNTAX
ERROR #5) is generated.

Even valid characters may terminate a field, if they are used
out of context. The following diagram shows the general form
for a numeric field in which all the elements are valid (note
that spaces may separate any two elements without having any
effect on the evaluation):

Radie fhaek

PAGE 6 - 97

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

@wff»EXPONENTf

DIGIT

"digit' is one of the characters from 0 through 9.
"exponent' is a whole number from -64 to +63. The sign is
optional for positive values.

For example, the table below describes result of the statement
INPUT USING AS$, S1, S2%
under various conditions ("~ " represents a leading or trailing

blank space and is used only where necessary for illustration or
emphasis).

the blank space in the image.
in the table.

Radie fhaek

Result
A$ (Image) Data S1 S2%
HhESH HHHH 1234567890 12345 7890
#hEHE 7710 12 10 12
BHESHERS # -1.234E5 1 -123400 1
BHEEE HHHH 100, 2000 100 2000
BHfHH HHHH 100,2000 100 0*
FHEHE . HEHH 12345.67890 12345, 6789
FhHHHE # 1 1 100000 1
* Zero because the '2' after ',' is forced into alignment with

Compare with the preceding line

PAGE 6 - 98

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~- STATEMENT --

INPUT USING from a disk file
Input Formatted Data From Disk File

Sequentlal access:
INPUT USING # flle unlt' image, variable-list

Indexed sequentlal access:
~ INPUT USING # flle—unlt KEY

i

key; image, variable-list

- Direct access:
INPUT USING # file-unit, KEY
varlable llSt

record-number; image,

'file-unit' 1is a numeric expression speCifying the
output file. The file-unit number is aSSLgned when
the file is opened.

'image ' spe01f1es the format of the data; it can be a
line number referrlng to an image statement, or a
string expression contalnlng the image. o

'variable-list' specifies the target variables to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuatlon
after the last variable.

'KEY=key' 1is used for lnput from indexed sequentlal
access files. 'key' is a string expression
containing the sort key.

'KEY=record-number' is used for input from direct
access files. 'record-number' is a numeric
expression specifying the record number.

This statement inputs formatted data from a disk file in a
manner analogous to INPUT USING from the keyboard. The data
should have been written by an analogous PRINT to disk file
statement. The number and type of target variables should match
the number and type of values in the PRINT item-list.

For further details on image specifiers and input stream
editing, see INPUT USING from the Keyboard.

Radie Sfhaek

PAGE 6 - 99

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Examples

INPUT USING #1; "####### ## #####4+ ####4", A, B, C, D

Inputs values for A, B, C and D using the indicated image, from
file-unit #1.

INPUT USING #2, KEY=NAMES; FMTS$, PAYRAT, EXEMPTS%
Inputs values for PAYRAT and EXEMPT% from the record indexed by
the contents of NAMES, using the image in FMT$, from file-unit
$#2.

100 ;#####44 #4

200 INPUT USING #3, KEY=RECORD%; 100, PAYRAT, EXEMPT%
Inputs values for PAYRAT and EXEMPT% from the direct-access

record specified by RECORD%, using the image in line 100, from
file-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 100

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—— FUNCTION --

INPUTS
Input a Character String

7 INPUT$(léngth);“"‘ ; | .
- 'length' is a numeric expression in the range
- of 1 to 255. ‘ : , o |

INPUTS causes the program to stop execution until the operator
inputs a string with the 'length' specified. For example,
INPUTS$ (3) causes the program to stop until the operator inputs 3
characters and presses <ENTER>, after which the program
immediately resumes execution.

The operator can input less than the 'length' required by
pressing <ENTER> after completing the input.

Examples

AS = INPUTS(5)

The program stops until the operator presses either 5 characters
(or less than 5 characters) followed by <ENTER>. This string is
assigned to AS.

IF INPUTS(3) = "YES" THEN 500

The program stops until the operator presses 3 characters (or
less than 3) followed by <ENTER>. After <ENTER> is pressed, the
Computer executes the rest of the IF/THEN statement.

LPRINT INPUTS$(20)

At this line, the program stops to allow the operator to input a
maximum of 20 characters. These characters are then printed on
the line printer.

Radie Sfhaek

PAGE 6 - 101

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
8@ REM #¥% SAMPLE PROGRAM DEMONSTRATING INPUTS #x%
9@ REM
100 REM ¥#% MAILING LIST - LAET TWO ENTRIES #xx
110 REM

128 PRINT "TYPE THE STATE —--— MUST BE TWO CHARACTERG"
138 A% = INPUT®H(Z)
148 PRINT "TYPE THE ZIP CODE -- MUST BE 3 CHARACTERG"
15@ B$ = INPUTH(3)

168 ADDRESS: = A% & " " & Bs @ PRINT ADDRESS$
#RLJ
TYPE THE STATE --— MUST BE TWO CHARACTERS
TX
TYPE THE ZIP CODE -— MUST BE 5 CHARACTERS
761148
TX 76118

STOP LINE 1460

Radie fhaek

PAGE 6 - 102

MODEL I/III COMPILER BASIC
W

BASIC KEYWORDS

TRS-80

~== FUNCTION =--

INT
CONVERT TO INTEGER VALUE

 ~iNT(nﬁmbef)ﬁf‘§g

 'number' is any numeric expression.

INT returns the largest whole number that is not
"number'. Unlike CVI, the number is NOT limited
[-32768, 32767].

Examples

A = INT(X)

Gets the integer value of X and stores it in A.
PRINT INT(2.5)

Prints 2.
PRINT INT(-2.5)

Prints -3.

Sample Program

greater than the
to the range

88 REM #¥% BAMPLE PROGRAM DEMONSTRATING INT #%%

9@ REM

1@ PRINT "ENTER & &6~-DIGIT POSITIVE NUMBER LIKE XX.XXXX"

11@ INPUT X
120 IF X<@ THEN 1@
138 A = INT((X*10@) + B.5) / 100

14@ PRINT X35 "ROUNDED TO TWO DECIMAL PLACES IS"; A

158 GOTO 160

#RU
ENTER A &-DIGIT POSITIVE NUMBER LIKE XX.XXXX
7 45.8976
45,8976 ROUNDED TO TWO DECIMAL PLACES IS 45.9

Radie fhaek

PAGE 6 - 103

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= STATEMENT --

INTEGER
Define Variables as Integers

INTE“‘"*Z letter llSt ; . .
“*2 represents the 2- byte length of the 1ntegers.;e}ffjgﬁj
This may be omitted. =
. UYigtrey Tist! s a sequence of 1nd1v1dual 1etter3"'s
~ or letter ranges; the elements of the llst must
- be separated by commas.‘ A letter range is in the
. ~form~ o - . .
‘ letterl- letter2 ~ ‘
;If omltted, all varlables w1ll be deflﬂed as
klntegers. ~ . . ~

Ordinarily, BASIC classifies all variables as real unless a
definition statement or type declaration tag tells it to do
otherwise. INTEGER changes this default from real to integer.

If a "letter list' is used, only variable names beginning with
the letters specified will be defaulted. Integer values must be
in the range of =-32768 to 32767. They are stored internally in
two-byte, two's complement form.

INTEGER cannot be used after an executable statement.

Note: For more information, see the chapter on BASIC Concepts.

Examples

INTEGER A, I, N

After the above line, all variables beginning with A, I, or N
will be treated as integers. For example, Al, AA, and I3 will
be integer variables. However, Al$, AAS, and I3$ would still be
string variables, because the type-declaration characters always
override the INTEGER statement.

INTEGER I-N

Radie Sfhaek

PAGE 6 - 104

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Causes any variable beginning with the letters I through N to be
treated as integer variable.

INTEGER

All variables in the program will be treated as integers unless
they have a type declaration tag, or there is a STRING or REAL
statement following this.

Sample Program

g
S8
120
116
120
138

#RiJ

REM ##¥% SAMPLE PROGRAM DEMONSTRATING INTEGER *¥#
REM

INTEGER W

Z o= 1.9 &8 W = 1.9

PRINT "THE VALUE OF REAL NUMBER Z I8 "3 Z
PRINT "BUT THE VALUE OF INTEGER W IS "3 W

THE VALUE OF REAL NUMBER Z IS8 1.9
BUT THE VALUE OF INTEGER W IS 1
STOP LINE 130

Radie Shaek

PAGE 6 - 105

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

-- STATEMENT --

KILL
Kill Disk File

KILL filespec ; ; .

~ 'filespec' is a string constant or a string
variable representing a TRSDOS file
specification. If it is a constant, it
must be enclosed in quotes. ~

When the KILL statement is executed, the 'filespec' will be
deleted from the disk directory. It may no longer be accessed
and will be replaced by another file. KILL will not prompt you
before deleting the file, so you might want to write a prompt as
part of your program.

Examples

KILL "FILE/BAS:1"

When this statement is executed, the file FILE/BAS from the disk
in drive 1 will be deleted from the disk.

KILL A$
The filespec stored as AS$ is deleted from the disk.

Sample Program

5 REM ¥#¥% SAMPLE PROGRAM DEMONSTRATING KILL ##x

6 REM

1@ PRINT "INPUT THE FILE SPECIFICATION YOU WANT ToO KILL®
15 PRINT "YOU WILL NOT BE PROMPTED -—— "

17 PRINT "THE FILE WILL IMMEDIATELY BE DELETED"

18 PRINT "WITH NO WaY T0O RECOVER IT®
28 INPUT A%
2B KILL A%
40 GOTO 160
®
Radie fhaek

PAGE 6 - 106

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~-— FUNCTION =--

LEN
Get Length of String

LEN returns the current number of characters in the 'string'.

Examples

R T p——

PRINT LEN("MARY")
Prints 4.

PRINT LEN("MARY HAD A")
Prints 10.

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES in X.

Sample Program

8@ REM ##4 SAMPLE PROGRAM DEMONSTRATING LEN #%#
96 REM

108 PRINT "INPUT WORDS OR A SHORT SENTENCE"

1180 INPUT A%

128 PRINT "YOUR SENTENCE HAS"3 LEN(A%)3 "CHARACTERSG®
130 GOTO 106

*#RUN

INPUT WORDS OR A SHORT SENTENCE

7 THIS IS5 A BIRTHDAY SONG. IT ISN’T VERY LONG.
YOUR SENTENCE HAS 44 CHARACTERS

Radie fhaek

PAGE 6 - 107

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

LINE INPUT
Input Line of Data

LINE INPUT LENGTH—number, PROMPT strlng, strlng varlable
The blank space in 'LINE INPUT' is optiopal.
strlng 1s a strlng constant or a strlng varlable. =
PROMPT= strlng,kmay be omitted. . -
'strlnngarlable is the target varlable
, for the input data. ‘
'number' is an integer value spec1fy1ng the max1mum
number of characters to input. '
- LENGTH= number, is optlonal If omltted the'f
default value of 255 is useda

When executed LINE INPUT dlsplays the prompt or a questlon
mark. When you press <ENTER>, LINE INPUT accepts the line into
the target variable.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.
shift <- Erases the line and starts over.

<SPACEBAR> Advances the cursor and types a blank space.
<= Backspaces the cursor and erases character.
<BREAK> Halts the LINE INPUT and gives control to the

<BREAK> handler.

All other keys are accepted as data for the input line.

Examples

o o

LINE INPUT TXTS$
Inputs a line of characters into TXTS.

Sample Program

10 REM *%% LINE INPUT ***
20 DIM TXT$255
30 PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERS AT ALL"

Radie fhaek

PAGE 6 - 108

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS

TRS-80™

40 LINE INPUT TXTS

50 PRINT "HERE'S HOW THE DATA IS SAVED"
60 PRINT wvvu; TXTS; 0wy

70 PRINT: GOTO 30

Input Stream Edit Process

Unlike INPUT, LINE INPUT does not ignore leading blanks. Every
character you type (except the special keys listed previously)
is accepted as data into the target variable. There are no
invalid characters, and there are no terminators except for
<ENTER> and <BREAK>.

For example, the table below describes the result of the
statement

LINE INPUT USING X$

under various conditions (<ENTER> represents a carriage return;
"T" represents a leading or trailing blank space and is used
only where necessary for illustration or emphasis).

Data stream Result in X$

J.D. POWERS <ENTER> 'J.D. POWERS®

“T~J.D. POWERS™™" <ENTER> I J.D. POWERS !

FIRST, SECOND, THIRD <ENTER> '"FIRST, SECOND, THIRD'

HE SAID "HI" <ENTER> "HE SAID "HI"'

HE SAID, "HI, JACK" <ENTER> 'HE SAID, "HI, JACK"!

TWO DOUBLE-QUOTES "" "TWO DOUBLE-QUOTES ""?
i REM ##4 LINE INPUT ##%

2B DIM TXTH255

3@ PRINT "TYPE IN A LINE OF TEXT--ANY CHARACTERE AT aALL":
4B LLINE INPUT TXT$

38 PRINT "HERE'S HOW THE DATA I8 SAVED!

6@ PRINT "'y TXTésy "

70 PRINT: GOTO 3@

*RU

TYPE IN A& LINE OF TEXT--ANY CHARACTERES AT ALL

7 THIS I8 & LINE OF TEXT CONTAINING SOME CHARACTERS . L&#.
HERE®S HOW THE DATA I8 SAVED

THIS IS A LINE OF TEXT CONTAINING SOME CHARACTERSs . %&#.°

PAGE 6 - 109

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— STATEMENT --

LINE INPUT from a disk file
Input Line of Data from Disk File

This statement inputs a line of data from a disk file and stores
it in a string variable.

For disk input, a line of data is
terminated by any of the following
. A carriage return.

. Reception of 255 characters without a carriage return.

. End of file.

The input stream edit process is like that of LINE INPUT from
the keyboard.

Examples

LINE INPUT #1; AS

Radie fhaek

PAGE 6 - 110

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Inputs a value for A$ from file-unit #1.
LINE INPUT #2, KEY=NAMES; COMMENTSS

Inputs a value for COMMENTS from the record indexed by the
contents of NAMES, from file-unit #2.

LINE INPUT #3, KEY=RECORD%; COMMENTS
Inputs a value for COMMENTS from the direct-access record

specified by RECORD%, from file-unit #3.

Sample Program

See the chapter on data files.

Radio fhaek

PAGE 6 - 111

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION -~-

LOG
Compute Natural Logarithm

‘number' is a numeric expression.

LOG returns the natural logarithm of the ‘number®'. This is the
inverse of the EXP function, so X = LOG(EXP(X)). To find the
logarithm of a number to another base B, use the formula LOG
B(X) = LOG E(X)/LOG E(B). For example, LOG(32767)/LOG(2)
returns the logarithm to base 2 of 32767.

The result is always a real number.

Examples

s o ot ot i s s

B = LOG(A)
Computes the value of LOG(A) and stores it in B.
PRINT LOG(3.14159)
Prints the value 1.4473.
Z = 10 * LOG(P2/P1)

Performs the indicated calculation and assigns it to Z.

Sample Program

1@ PRINT "INPUT A NUMBER"

2@ INPUT N

3@ PRINT "THE NATURAL LOGARITHM OFY"3 N3 "IG"35 LOGIN)
43 QOTO 1@

Radio fhaek

PAGE 6 - 112

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION =--

LOG10
Compute Base 10 Logarithm

LOG10 (number) ...
‘number' is any numeric expression

LOG1l0 returns the base 10 logarithm of the 'number'. This is
the inverse of the EXP10 function, so X=LOG1l0 (EXP10 (X)).

Examples

PRINT LOG10 (100)
Prints 2.
X = LOGLO(Y)

Assigns the value LOG1l0(Y) to X.

X 10/LOG10 (X + 2A)

Performs the calculation and assigns the results to X.

Sample Program

— o — o o (o s s (o

80 REM *#% SAMPLE PROGRAM DEMONGTRATING LOGID ##%%
9@ REM

1@ PRINT "INPUT A NUMBER"

i@ INPUT N

12600 PRINT N3 " = 1@ TO THE POWER OF"3 LOGI@®(N)

130 GOTO 100

#RU

INPUT A NUMBER

7 56

56 = 10 TO THE POWER OF 1.74B19

Radie Shaek

PAGE 6 - 113

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS- @

~= STATEMENT --

LPRINT
Print on Line Printer

Every 1tem but the last,;,
‘ ‘-colon or comma. ﬁ;

This statement outputs to the printer, beginning at the current
carriage position. It works just like PRINT, except for those
details specific to the video display.

Before using LPRINT, you must initialize the printer with the
TRSDOS FORMS command. This establishes the line-width,
page-length, and other parameters. See FORMS in the TRSDOS
Reference Manual.

Control Codes

The following control codes are intercepted and handled by
TRSDOS:

Code
Hex. Dec. Action Taken

VSR S M A I W . o — - —— o ——

9 09 Tabs to next eight column boundary.
0A 10 Ignored (not needed by Radio Shack
line printers).
0cC 12 Form feed.
®
Radie fhaek

PAGE 6 - 114

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

All other codes are sent unchanged to the printer.

Sample Program

BB REM #%% SAMPLE PROGRAM DEMONSTRATING LPRINT ##%

G0 REM

100 REM #%% CHECK THAT LINE PRINTER IS CONNECTED AND ON-LINE #3%
110 REM

120 PRINT "INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER"
130 INPUT A%
146 LPRINT A%
156 GOTO 1:2@
THIS I8 WHAT I WANT THE LINE FRINTER TO PRINT!!!

#RU

INPUT WHAT YOU WANT PRINTED ON THE LINE PRINTER
7 THIS IS WHAT I WANT THE LINE PRINTER TO PRINT!!!

Radie fhaek

PAGE 6 - 115

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~~ STATEMENT --

LPRINT USING
Print Using Format on Line Printer

LPRINT USING image, item- llst

'‘image' specifies the format of the data, it can
be a line number referring to an image :
statement, or a string expression containing
the image spec1f1ers.

'print-function’ is an optional use of TAB.
If omitted, printing starts at the current
carriage position.

'item-list' contains expressions to be evaluated
and output to the printer. TAB may be anywhere in
the item list. Every item but the last
must be followed by a comma or semi-colon.
However, a comma or semi-colon after the last
item will suppress the automatic carriage return
after the last character is printed. The
carriage will remain in the next position
following the last character printed. |

This statement outputs to the printer, beginning at the current
carriage location. Unlike LPRINT, it outputs formatted data,
according to an image specification contained on a separate
program line or in a string variable.

LPRINT USING is just like PRINT USING, except for the special
features related to the video display.

Before using LPRINT, you must initialize the printer with the
TRSDOS FORMS command. This establishes the line-width,
page-length, and other parameters. See FORMS in the TRSDOS
Reference Manual.

Control Codes

The following control codes are intercepted and handled by
TRSDOS:

Radie fhaek

PAGE 6 - 116

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Code
Hex. Dec. Action Taken
9 09 Tabs to next eight-column boundary.
0A 10 Ignored (not needed by Radio Shack
line printers).
0cC 12 Form feed.

All other codes are sent unchanged to the printer.

Sample Program

BB REM *#% BAMPLE PROGRAM DEMONSTRATING LPRINT USING ##%
Q@ REM

128 TOTAL = @

11@ 5 dbdbdbdedbd . W

120 5 bbb

130 FOR T = 1 TO &5

140 N = RND(@) % 99

15@ LPRINT USING 118 N

16@ TOTAL = TOTAL + N

173 NEXT 1

186 LPRINT UBING 128y "l
190 LPRINT USING 118s TOTAL

Radie Shaek

PAGE 6 - 117

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

-- STATEMENT --

ON BREAK GOTO
Enable a <BREAK> Handling Routine

~ ON BREAK GOTO line number

Normally, when you hit the <BREAK> key while executing a

program, BASIC stops your program and puts you in the command
mode. You then must start your program at the beginning again.

You might want BASIC to handle the <BREAK> key in a different
way. ON BREAK GOTO tells BASIC to go to the line number you
specify whenever the <BREAK> key is pressed.

Note: Also see RESET BREAK

Example

ON BREAK GOTO 500

Whenever a <BREAK> key is pressed, control will go to line
number 500.

Sample Program

e - o - ——— ——— vt —

1@ REM #%% ON BREAK GOTO AND RESET BREAK STATEMENTS ®#%
28 PRINT CHR&$(28)35 CHR$(31)

3@ ON BREAK GOTO 168

4@ PRINT "I°M TRAPPING THE <BREAK> KEY NOW"

3@ PRINT "PRESE <BREAK> WHILE I COUNT TO i2da*

63 FOR I = 1 TO 1000

74 FRINT CRT(B8s15)3 1

80 NEXT I

2@ RESET BREAK

103G PRINT "NOW BREAK IS RESET®

11@ PRINT "TRY PRESSING <RPREAK> WHILE I COUNT TO i100@"

Radie Shaek

PAGE 6 - 118

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

1206 FOR I = 1 TO 1000

130 PRINT CRT(Bs15)3 I

140 NEXT I

150 STOP

160 PRINT CHR$(:28)3 CHR%(31)s5 "YOU PRESSED +“BREAK:"
176 GOTO 90

I'M TRAPPING THE <BREAK! KEY NOW
PRESS <BREAK> WHILE I COUNT TO 1000

352

YOU PRESSED <BREAKX
NOW BREAK IS RESET
TRY PRESSING <BREAK: WHILE I COUNT TO 1000

1006
STOP LINE 150

Radie Sfhaek

PAGE 6 - 119

MODEL I/III COMPILER BASIC BASIC KEYWORDS

-— STATEMENT --

ON ERROR GOTO
Set Up Error-trapping Routine

ON ERROR GO TO line number
ON ERROR GOTO line number

ON ERROR GO TO or ON ERROR GOTO (the space is optional) allows
you to set up an error-trapping routine to get the Computer to
handle the error the way you want it handled. Normally, you
have a particular error in mind when you use the ON ERROR GOTO
statement.

This statement is often used to prevent error messages from
confusing an operator who is a non-programmer. For example, if
the operator inputs the wrong data type in any of your input
statements, the Computer will break program execution and print
an Input Syntax error message. To prevent this from happening
you can set up an error trapping routine like the one
demonstrated in the sample program.

The ON ERROR GOTO statement must be executed before the error
occurs or it will have no effect. Once it has "trapped” an
error, ON ERROR GOTO is disabled. You must use another ON ERROR
GOTO statement to trap the next error.

A good way to use ON ERROR GOTO is to place it before any

statement which might cause an error. If no error occurs, the
next ON ERROR GOTO statement will supersede it.

Note: Also see ERR, ERROR, and RESET ERROR

Example

ON ERROR GOTO 1500

If an error occurs in your program anywhere after this line,
control will branch to line 1500.

Radie fhaek

PAGE 6 - 120

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
Sample Program
B REM *###% SAMPLE PROGRAM DEMONSTRATING ON ERROR GOTO ###%

96 REM
1@ ON ERROR GOTO 1402
118 PRINT "INPUT & WORD"
128 INPUT A
138 8TOP
1480 IF ERR <> 5 THEN ERROR ERR
150 PRINT "SBORRYs YOU HAVE TO INPUT & NUMBER"
168 REM
170 REM ##% NEXT STATEMENT RE-ENABLES ON ERROR GOTO #%%
186 REM
198 ON ERROR GOTO 14@
206 GOTO 120

#RU

INPUT A& WORD

7 GOOBER

SORRYs YOU HAVE TO INPUT A& NUMBER
7 67

STOP LINE 130

Radie faek

PAGE 6 - 121

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~= STATEMENT --

ON...GOSUB
Test and Branch to Subroutine

~ ON test-value GOSUB line number, line number, ...

ON...GO SUB or ON...GOSUB (the space is optional) is a multi-way
branching statement like ON GOTO, except that control passes to
a subroutine rather than just being shifted to another part of
the program. For further information, see ON GOTO

Example

ON Y GOSUB 1000, 2000, 3000

This statement will first evaluate Y. If Y = 1, the subroutipe
beginning at line 1000 will be called. If Y = 2, the gubroutlne
at 2000 will be called. If Y = 3, the subroutine at line 3000

will be called.

Sample Program

80 REM *##% SAMPLE PROGRAM DEMONSTRATING ON ... GOSUB #%%
9@ REM

1@@ PRINT "CHOOSE 1: 2+ OR 3"

11@ INPUT I

120 ON T GOBUR 500+ 608 700

138 STOP

5060 PRINT "SURROUTINE #i1" : RETURN
HBA PRINT "SUBROUTINE #2" ¢ RETURN
700 PRINT "SUBROUTINE #3" : RETURN
#RU
CHOOSE 15 = OR 3
73
SUBROUTINE #3
STOP LINE 130
®
Radio fhaek

PAGE 6 - 122

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT ==

ON...GOTO
Test and Branch to Different Program Line

~ ON test-value GOTO line number, line
. 'test-value! is a numeric express

ON...GO TO or ON...GOTO (the space is optional) is a multi-way
branching statement that is controlled by test value.

When the Computer executes ON GOTO, it first evaluates
"test~-value' and, if it is a real number, converts it to an
integer. We'll refer to this integer as J. The Computer then
transfers control to the Jth line number in the ON GOTO
statement. For example, if J = 1, the Computer transfers
control to the first line number following GOTO; if J = 5, the
program control drops to the fifth line number.

If 'test value' is smaller than one or greater than the number
of line numbers in the list, the computer will proceed to the
next program line.

Examples

ON A GOTO 100, 200, 300

If the integer of A equals 1, program control drops to 100.
If it equals 2, program control drops to 200.
If it equals 3, program control drops to 300.

ON X GOTO 500, 520, 540, 550, 560

If integer A equals 1, program control drops to line 500.
If it equals 2, program control drops to line 520.
If it equals 3, program control drops to line 540.
If it equals 4, program control drops to line 550.
If it equals 5, program control drops to line 560.

PAGE 6 - 123

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Program

——— — o ot

80 REM *¥¥% SAMPLE PROGRAM DEMONSTRATING ON...GQOTO #%#%
2@ REM
120 PRINT "DO YOU WANT TO -—-—- "
11@ PRINT " (1) INPUT FILES"
120 PRINT " (2) REVISE FILES"
138 PRINT " (3) LIST FILES"
140 PRINT "INPUT 1s 2Zs OR 3"
15@ INPUT A
160 ON A GOTO 500, 600, 700
170 GOTO 100
508 PRINT "INPUT FILES PROGRAM" : STOP
600 PRINT "REVIGE FILES PROGRAM" @ STOP
700 PRINT "LIST FILES PROGRAM" : STOP
RUN
DO YOU WANT TO e
(1) INPUT FILES
{(2) REVISE FILES
(3) LIST FILES
INPUT 1s 29 OR 3
7?7 3
LIST FILES PROGRAM
S5TOP LINE 700

Radio fhaek

PAGE 6 - 124

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

=— STATEMENT --

OPEN
Open Disk File

OPEN #file-unit, :fi*ie‘, MODE"'m, TYPE-—t LENGTH-—:L KEY k

w'filefunit“~1s a numerlc expre551on-~wh_le the flle 131**”
' open, this number will be used to reference that‘
flle for disk I/0 statements and functlons-
'flle is a strlng expression contatnlng a TRSDOS flle,

; spec1f1catlon for the file to be opened. If 'flle‘ .
is a string constant, it must be encl 5Au~ln double
quotes. o

V'MODE~m' spec1f1es the access mode,_’m 1s~one of the
kfol]_ow;_ng",ﬁ- o . S : .
R Read only ‘ ‘ ' -
B Extend (i.e., sequentlal wrlte beglnnlng at the7*
. _end of the file) - .
U Update (1 e., read or wrlte to an ex1st1ng
~ direct or ISAM flle) . o
k"TYPE £l spe01f1es the flle*type. ?tﬁﬁ’
. following: .
D, R Direct (random) access f11e (1 e.; reC'
- referenced by record number)
I Indexed sequential access flle (ISAM, 1. e.,
_records are referenced by a sortlng key)
S Sequentlal (1 e., records are referenced in
- 'sequence) : _J\jg
‘?LENGTH ' spec1f1es the length of data ln each ‘
record. (BASIC adds any neces ary@foverhead)
'1'" is a numerlc exore351on w1i ' fr
255. ‘
A value of 0 for 1 1mplles a record leng
If 'LENGTH=1' is omitted and the file type is
~ sequential (' TYPE S) varlable—length records'
; used.
,'KEY k* spec1f1es the 1ength of the key 'k'
; _ numeric expression from 1 to 127 “yf. o
'KEY=k' must be used when the file type is ISAMUTx
('TYPE=1"'), and must be omltted for all other
flle types -

Note: MODE, TYPE, LENGTH, and KEY may appear in any

@

PAGE 6 - 125

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

order.

This statement sets up the required buffers and control blocks
for disk file I/0. The file specified by 'file' is given a
file-unit number. While the file is open, this number is used
to reference the file.

A file cannot be opened under two file-units at once.

The parameters in the OPEN statement determine the file type,
access mode, record length, and other specific features. See
"Data Files" for a discussion of file access under RSBASIC.

Examples

OPEN #1, "DATA/D", MODE=R, TYPE=D, LENGTH=32

Opens the file "DATA/D" for direct access, read-only, with a
record length of 32. File-unit #1 will be used. If the file
was created with a different record length, an error will occur.

OPEN #2, "MAILLIST/ISM", MODE=U, TYPE=I, LENGTH=128, KEY=25

Opens the file "MAILLIST/ISM" for updating. The file must
already exist on one of the diskettes in the system or an error
will occur. The file must be indexed-sequential, with a record
length of 128 and a key length of 25. File-unit #2 will be
used.

OPEN #(BASE% + CURNT%), FILES$, MODE=E, TYPE=S
Opens the file specified by the contents of FILE$ for sequential

writing beginning at the end of the file. The file-unit
specified by the expression (BASE% + CURNT%) will be used.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 126

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

OR
Calculate Logical OR

OR (number, number) e o
'number ' is any number 1n the range of
[32768, 32767] = .

OR is a logical operation performed on the binary
representations of the two 'numbers®. OR searches the bits of
each number to see if either or both are set to 1. A binary 1
is returned if either or both bits are 1; a 0 is returned only
if neither bit contains a 1.

First Second Bit
Number Number Returned
1 1 1
1 0 1
0 1 1
0 0 0

If 'number' is a real number, OR will convert it to an integer.
The binary number returned is always expressed
as an integer.

Note: Also see AND and XOR.

Examples

o . — o

PRINT OR(192,3)

Prints 195. The operation is performed as follows:

Binary
Integer Representation
192 11000000
3 00000011
195 11000011

Radie fhaek

PAGE 6 - 127

MODEL I/III COMPILER BASIC BASIC KEYWORDS

PRINT OR{195, 3)

Prints 195:

Binary
Integer Representation
195 11000011
3 00000011
195 11000011
Sample Program
1@ REM #x% SAMPLE PROGRAM DEMONSTRATING OR #%%
20 REM
20 Ce o= "¢

48 PRINT "TYPE A& SENTEMCE WITH UPPER AND LOWER CABE LETTERS"
53 INFUT &%

&0 FOR X = 1 TO LEN(A%)

7@ Be = GEGE(AEs X3 1)

8a D o= ABC(B%)

5@ % = CF & CHRSIOR(3ZsD))

1@ NEXT X

119 PRINT "HERE IT IS IN ALL LOWER CASE & "3 (%

120 GOTO 38

#RU

TYPE A& SENTENCE WITH UPPER AND LOWER CAZE LETTERES

7 Thizs iz a Sentence wzing UPPER and lTower Casze letters.

MERE IT IS IN ALL LOWER CASE ¢ thiz iz a zentence uzing upper an
d lower casze letters.

Radie fhaelk

PAGE 6 - 128

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-= FUNCTION =--

POS
Search for Specified String

POS(strlng l, strlng_z) ,
'string' is a string constantf r
'strlng 1' is the string to;be searched.
strlng 2' 1s the subs-rlng you want tof,ear,_5

Examples

In these examples, A$ = "LINCOLN".
POS(A$, "INC")
Returns 2.
POS(AS, "COLN")
Returns 4.
POS(AS, "12")
Returns 0.
POS(A$, "LINCOLNABRAHAM")

Returns 0.

Sample Program

——— v —— — — - ———

a0 REM ##% SBAMPLE PROGRAM DEMONSTRATING POS #*%%

9@ REM

198 REM #%% GEARCH MAILING LIST FOR NO. OF 761## ZIP CODES #%#%
112 REM

120 COUNTER = @

13@ READ ADDRESH®

140 IF ADDRESS4 = "@" THEN 180

158 IF POS(ADDRESS$. "761") = @ THEM 130

Radio fhaek

PAGE 6 - 129

MODEL

I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

1468
176
186
156
gl
21@
220
230
248

R

COUNTER = COUNTER + 1

GOTO 136

PRINT "NUMBER OF TARRANT COUNTY.: TX ADDREGHES IG"3 COUNTER & STOP
DaTA "10BE TWO TANDY CENTERs FORT WORTHs TX 7&i1620

DATA "16622 SGOUTH CENTRAL EXPRESSWAYs RICHARDSON: TX 75@886"

DaTA "BOX 38328 TCUs FORT WORTHs TX 76129"

DATA "180 SYLVAN DRIVEs WESTFIELDs MA B1085"

DATA "5951 GORMAM DRIVE. BURLESON: TX 74148°

DATA @

NUMBER OF TARRANT COUNTY.s TX ADDRESSES I& 3
STOP LINE 180

Radie fhaek

PAGE 6 - 130

MODEL I/IITI COMPILER BASIC BASTIC KEYWORDS

-— STATEMENT --

PRINT
Print on Video Display

 PRINT item-list
'item-list' contains expressions to be evaluated and
output to the video display. 'item-list' may
also contain any of the special print functions
listed below. Every item but the last must be
followed by a seml—colon or comma .

A semi=-colon leaves the curscr in its current

position; a comma advances the cursor to the next
print zone (see description below).

Unless a semi-colon or comma follows the last
item, PRINT will output a carriage return
after the last character is displayed.

This statement outputs to the display, beginning at the current
cursor position. It outputs string data character-for-character,
with no alteration, and modifies numeric data according to a
default format described later on.

The punctuation between items (semi-cclons or commas) determines
the spacing between the text as it is displayed. A semi-colon
produces no extra space, while a comma advances the cursor to
the next print zone. The print zones are:

| ZONE 1 ZONE 2 ZONE 3| ZONE 4 ZONE 5
COLUMNS |0 15| |16 31 32 47| |48 63 64 79

Examples

PRINT A / 3
Displays the result of A/B.

PRINT "THE SUM IS"; A + B

Radie Shaelk

PAGE 6 - 131

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Displays the message in quotes followed by the result of A+B.
PRINT "NAME", "AGE", "PHONE"

Displays the three headings in three successive print zones.

Cursor Motion and Print Positions

. —— — o — — —— —— ————— — — = — —— —— oy —

Whenever a character is printed in column 63, the cursor wraps
around to column 0 on the next row. Whenever a character is
printed in column 63 on the bottom row (15) of the display, the
display scrolls up, and the cursor returns to column 0 of row
15. Scrolling also occurs when a carriage return or line-feed is
printed while the cursor is anywhere on the bottom row.

(Scrolling: The text in row 1 is moved to row 0, the text in row
2 is moved to row 1, ... the text in row 15 is moved to row 14.
The row 15 is then filled with blanks.)

The current cursor position determines where a particular item
will be printed. 1In general, the current cursor position
immediately follows the last character printed. However, there
are several ways to move the cursor before printing an item.

Semi-Colons and Commas

When semi-colons are used as separators in the item list, each
item is printed immediately after the last item printed. When
commas are used as separators, the cursor advances to the next
print zone after printing each item.

For example:

10 DATA "FIRST", 100.100, "SECOND", 1234.567, "END", O
20 PRINT "DEMO OF PRINT WITH SEMI-COLONS IN ITEM-LIST"
30 READ TXTS, NMBR

40 PRINT TXTS$; NMBR;

50 IF TXTS$ <> "END" THEN 30

60 RESTORE

70 PRINT: PRINT "DEMO OF PRINT WITH COMMAS IN ITEM-LIST"
80 READ TXTS$, NMBR

90 PRINT TXTS, NMBR,
100 IF TXTS$ <> "END" THEN 80

Commas provide a convenient way of outputting tables to the
display. The tables can contain up to five columns:

Radie fhaek

PAGE 6 - 132

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

10 PRINT "N", "N**Z", "N**3", HN**4W, LN
20 FOR N =1 TO 5 STEP .5

30 PRINT N, N**2, N**3, N**4,6 N*%*5

40 NEXT N

CRT and CRTR

There are two special print functions for positioning the
cursor. CRT moves it to an absolute row—-column location; CRTR
moves it to a relative row-column location, specified as an
offset from the current row-column location. For syntax
details, see CRT and CRTR.

Output Format for Numbers

. The value is rounded to a maximum of six significant
digits (leading and trailing zeros are suppressed).
. After rounding, if the value is smaller than -999999 or
greater than +999999, it is displayed in E-format, e.g.,
1.1 E6 for the value 1100000
. After rounding, if the value is greater than -0.0000001
and less than +0.0000001, it is displayed in E-format,
e.g.,
1.1 E-7 for the value 0.00000011
. Numbers between -1 and +1 which are not displayed in
E-format are always displayed with a zero ahead of the
decimal point, e.g.,
0.05 for the value .05
. A single trailing space is always added to
the number. A leading space is added if the number is
positive and greater than zero.

Note: The PRINT USING statement lets you override these rules.

String Output

PRINT outputs in the scroll-mode. That means you can output any
of the scroll-mode characters, including control characters.

For a complete list of characters available;, see the TRSDOS
Reference Manual.

To send a character or string of characters, store the

character(s) in a string variable and PRINT the variable. Or
you can use the CHR$ and STRINGS functions. For example:

Radio Sfhaek

PAGE 6 - 133

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

A$ —_ kbW
PRINT AS

produces the same output as
PRINT STRINGS$(5, "=*")

CLS$ = CHRS$(28)
PRINT CLS$S

Stores control code 28 in CLS$. PRINTing CLS$ homes the cursor
to the upper left corner.

Graphics Characters

Since PRINT outputs in the scroll-mode, graphics characters
cannot be output using a normal print list. Instead, there is a
special function to provide graphics-mode output. See CRTG.
(For a list of graphics characters, see the TRSDOS Reference
Manual.)

Other PRINT-related functions

TAB, CRTX, CRTY, CRTI.

Radie fhaek

PAGE 6 - 134

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

PRINT to a disk file
Print to Disk

Sequential access: .
PRINT ¥ file—unit;,item—list :

kIndexed sequential:

PRINT # flle—unlt KEY—key, 1tem list

Dlreof anopqq- - : L - .
PRINT # flle-unlt KEY—record number,‘itemelist

"flle—unlt',‘ls a numeric expre351on spec1fy1ng
the output file. The flle—unlt 1s a351gned wh
the file is opened : .
'item-list' contains expre3313ns to be evaluated .
~and output to the disk file. Every item but the
last must be followed by a comma. There ~
should be no punctuatlon after the last 1tem._
,'KEY-key is used for output to indexed sequentlal
‘ access flles.,'key is a strlng expre331on V
o containing the sort key.
, fKEY—re~ord—number" is used for output to dlrect
‘ ~ access files. 'record-number' is a numeric
ffexpreCS'on spec1fy1ng the record number. ~

m - -

This statement performs disk output in a manner analogous to the
PRINT to video display. Of course, none of the special video
display functions may be used. One PRINT statement writes one
record.

A comma '," is inserted after each but the last item in the
disk record.

For output formats, see PRINT to Video Display.

See "Data Files" for a discussion of file access under RSBASIC.

Examples

Radie Shaek

PAGE 6 - 135

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80

PRINT #1; A+B
The value of A+B is output to file-unit #1.
PRINT #2, KEY=NAME$; NAMES, PAYRAT, EXEMPTS$%

NAMES$, PAYRAT, and EXEMPT are output to the record indexed by
the the contents of NAMES, in file-unit #2.

PRINT #3, KEY=RECNBR%; NAMES, PAYRAT, EXEMPT$%
The same three items are output to record number RECNBR%, in

file-unit #3.

Sample Program

See the chapter on data files.

Radie Sfhaek

PAGE 6 - 136

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- STATEMENT --

PRINT USING
Print Using Format

PRINT USING image, print-function, item-list ‘
1mage' spe01f1es the format of the data; it can
be a line number referrlng to an image ;
statement, or a strlng expre331on contalnlng
~ the image.
'print-function' is one of the specxal funct10ns~
. CRT, CRTR or CRTG. These functions position
~ the cursor before prlntlng starts. 1If omitted,
- LLnthg starts at the current cursor position.
'item-list' contains expressions to be evaluated
- and output to the video display. A TAB functlon
may be one of the items. Every item but .
the last must be followed by a comma or semi-colon.

This statement outputs to the display, beginning at the current
cursor location. Unlike PRINT, it outputs formatted data,
according to an image specification contained on a separate
program line or in a string expression.

When executed, PRINT USING attempts to output the first data
item according to the first field in 'image', the second
according to the second field, etc. If there are not enough
image fields to satisfy the item—list, PRINT USING starts over
at the beginning of 'image'.

Image Lines for PRINT USING

——————————— ———— ——— ———————— —— -

The image line indicates exactly how the data is to be printed:
number of fields, length of each field, literal characters to
insert between fields, and format for string or numeric fields.
The following special characters are available for specifying
the output format for string and numeric fields:

Radie Shaek

PAGE 6 - 137

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Special
Character Meaning

ok A numeric or string character.
A sequence of N "#" characters
represents a numeric or string
field of N characters.

> ‘ When used as the first character
‘ in a string field, data will be
right-justified with truncation on
the left.

< ' When used as the first character

‘ in a string field, data will be
left-justified with truncation on
the right.

< When used inside a numeric field,
‘ indicates the p051t10n of the de01mal
point.

, - When used inside a numeric field,
. ~ specifies commas to be inserted at that
position if a digit has been printed.

- - When used ahead of a numeric field, a
‘ minus sign will be displayed ahead of
negative numbers; blank space ahead of

positive numbers.

+ When used ahead of a numeric field, a
. plus sign will be displayed ahead of
positive numbers; minus sign ahead of
negative numbers.

% When used ahead of numeric fields,
‘ asterisks will be used as fill
characters instead of the usual blanks.

5 . ' When used ahead of numeric fields,
' ~ the dollar sign will be displayed
ahead of the number.

Qe
; Qe
oms
=

When used following a numeric field,
the number will be displayed with the
same E notation that the Mcdel I/III
BASIC Interpreter uses.

- Radio Shaek

PAGE 6 - 138

MODEL I/III COMPILER BASIC BASIC KEYWORDS

Any other characters--or any of the above characters used out of
context--will be treated as literals and inserted into the
display output. Such characters also serve as image-field
delimiters (they mark the beginning and end of the fields).

If stored in a separate program line, image lines take this
form-

llne-number~°1mage

format.;;,.,;,,,;f, ﬁn,.,,,ﬂ_

You can also store the image line inside a string, and then
reference that variable in PRINT USING in place of the
line-number.

Examples:

o - - - -

100 IMAGES = "MR. ######4### IS ## AND MAKES SH####.##"
110 PRINT USING IMAGES, NAMES, AGE%, SAL

Prints the values of the variables NAMES, AGE%, SAL using the
image line stored in IMAGES.

100 ;MR. ####4#4#44 IS ## AND MAKES S#####.44
110 PRINT USING 100, NAMES, AGE%, SAL

Produces the same output as the previous example.

110 PRINT USING 100, CRT(X%,Y%), NAMES, AGE%, SAL
Printing starts at row X%, column YS%.

110 PRINT USING 100, NAMES, AGE%, SAL,
The trailing comma suppresses the usual carriage return after

the last character is displayed.

How Data is Formatted into the Image

D e R e e e T e T pep———

Radio fhaek

PAGE 6 - 139

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

String Data

String data is left-justified into the image field, with filler
blanks added on the right if necessary. If the string is too
long to fit, the string is truncated on the right.

(When '>' is used as the first character in the field, the
string is right-justified with filler blanks added on the left
if necessary. If the string is too long to fit, truncation is
on the left.)

Numeric Data

If the field contains a decimal point, the number is rounded to
the precision specified in the image-field. The, rounded numbers
is always right justified, with filler blanks added on the left
if necessary. If the number contains too many numeric
characters to the left of the decimal point, a string of
asterisks will be output to fill the field (no digits will be
displayed.

Notes: Unless '+' or '-' is used ahead of the field,
negative numbers will require one of the '#' positions
for the sign. If '+' or '-' is used, the sign will not

take one of the '#' positions.

If "*'" is used, any unused leading positions will be
filled with asterisks instead of with the usual blanks.

Sample Program

- ————— — ——— - o~

10 REM *%% PRINT USING **%

20 DIM IMAGES80, STRINGS25

30 PRINT "ENTER THE OUTPUT IMAGE FOR 3 FIELDS: string,
real, integer"”

40 LINE INPUT IMAGES

50 PRINT "NOW ENTER THE DATA: string, real, integer"”

60 INPUT STRINGS, RLN, NTGR%

70 PRINT "HERE'S THE FORMATTED OUTPUT"

80 PRINT USING IMAGES, STRINGS, RLN, NTGR%

90 PRINT: GOTO 30

Radie fhaek

PAGE 6 - 140

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Run

#RU

ENTER THE GUTPUT IMAGE FOR THREE FIELDS: ztrings reals inte9er
T WA Wl W

NOW ENTER THE DATA: =z=tring9s real-numbers intedYer

7 LOTSALUCKs 34542 1283

HERE®S THE FORMATTED OUTPUT:

LOTSALUCK 345462, 1283

Radie fhaek

PAGE 6 - 141

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80™

== STATEMENT --

PRINT USING to a disk file
Print Using Format to Disk File

Sequentlal access-"‘”‘w
PRINT USING # f11e~un1t‘ imége,;

Indexed sequent1al~

item-1i

st::‘

- PRINT USING # flle—unlt KEY key, 1mage;’itém+1ist

; Dlrect access' fJ:ff“'

,~PRINT USING
o 1tem—llst

’flle unlt' 1s a numerlc expre551on S
the output file. The flle—unlt 1s
the file is opened. '

1mage' specifies the format of the da
line number referrlng to an 1mage

strlng expreSSLOn contalnlng the im

'item-list' ,contalns expre531ons to be

- and output to the disk file.

last must be fo_lowed by a comma.

o ’snould be no punctuatlon after the
. 'REY= key is used

~ access f11‘_~

; contalnlng“‘”

“KEY*record -number '

access flles., 'reco

expre531on speC1fy1n

J&Ikey

sort key. =
~ is used for outpu
"—number'

r

;g;

flle-unlt KEY~record number-

Every

image,“k'k

pecxfylng ,
3351gned when~”

ta' 1t can be a~5'
statement, or a
age spec1,;ers.
e evaluated
item but the
There .
last 1tem.-»“

for output to. 1ndexed sequentlal
is a strlng expres

:lO’l“'~i

t to dlr

is a numer1c~k
the record number. -

This statement performs disk output in a manner analogous to

PRINT USING to video display.
video display functions may be used.

PRINT USING outputs formatted data, according
specification contained on a separate line or
expression. When executed,
according to the first field in

'image',

Of course, none of the special

to an image
in a string

it outputs the first data item
the second,

according

Radie fhaek

PAGE 6 - 142

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

to the second field, etc. If there are not enough image fields
to satisfy the item-list, PRINT USING starts over at the
beginning of ‘'image'.

For further details on image specifiers, see PRINT USING to

Video Display. See "Data Files" for a discussion of file access
under RSBASIC.

Examples

PRINT USING #1; "###,###.##", A+B

The value of A+B is output using the specified format to
file-unit #1.

PRINT USING #2, KEY=NAMES; FMT$, NAMES:; PAYRAT;: EXEMPT%
NAMES$, PAYRAT, and EXEMPT are output using the image in FMT$, to
the record specified by the the contents of NAME$, to file-unit
#2.

100 ;<###4##HFdaataattant SHEHH H4
110 PRINT USING #3, KEY=RECNBR%; 100, NAME$; PAYRAT; EXEMPTS$

The same three items are output using the image of 1line 100, to
record number RECNBR%, to file-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 143

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= STATEMENT =-

RANDOMIZE
Reseed Random Number Generator

RANDOMIZE reseeds the random number generator to a random place
on the generator. If your program uses the RND function, the
same sequence of pseudorandom numbers will be generated every
time you Run the program. Therefore, you may want to put
RANDOMIZE at the beginning of the program. This will help
ensure that you get a different sequence of pseudorandom numbers
each time you run the program.

RANDOMIZE needs to be executed only once in the program.

Example

b mis s e o et -

RANDOMIZE

This statement helps ensure you will get a different sequence of
random numbers every time you RUN the program.

Sample Program

- - — 1 o ——— -

80 REM ¥%% SAMPLE PROGRAM DEMONSTRATING RANDOMIZE %%
@ REM

1@ RANDOMIZE

110 PRINT CHR&(28)35 CHR$(31)

12@ PRINT "PICK A NUMBER BETWEEN 1 AND 5

130 INPUT A

148 B% = RND % 5 4+ |

158 IF A& = B THEN 180

Radie fhaek

PAGE 6 - 144

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

160 PRINT "YOU LOSEs THE ANSWER IS "5 Bs " —— TRY AGAIN."
178 GOTO 120
188 PRINT "YOU PICKED THE RIGHT NUMBER —— YOU WIN!" & GOTO 120

PICK A NUMBER BETWEEN 1 AND 5
T 4

YOU LOSEs THE ANSWER IS8 5 —— TRY AGAIN.
PICK & NUMBER PETWEEN 1 AND 5
71
YOU LOSEs:s THE ANSWER IS 3 ~- TRY AGAIN.
PICK & NUMBER BETWEEN 1 AND 5
7 3
YOU PICKED THE RIGHT NUMBER —~— YOQU WIN!
®
Radio fhaek

PAGE 6 - 145

MODEL I/III COMPILER BASIC BASIC KEYWORDS
T

== STATEMENT --

READ
Get Value from DATA Statement

READ assigns a value from a DATA statement to the ‘variable’.
The first time READ is executed, READ assigns the first value in
the first DATA statement to its first ‘variable'. The second
time, READ reads the second value in the first DATA statement
and assigns it to its second variable. READ continues to assign
data to its variables in sequential order moving to the second
DATA statement when all the data in the first DATA statement has
been read.

An Out of Data error occurs if there are more attempts to READ
than there are DATA items.

Note: Also see DATA.

Examples

READ T
Reads a numeric value from a DATA statement.
READ S$, T, U

Reads values for S$, T, and U from a DATA statement

Sample Program

BB REM &% SAMPLE PROGRAM DEMONSTRATING READ #%%
P8 REM
188 REM ##% READ IN DISCOUNT QUALIFICATIONS #%%

110 READ Gi%s 0%
120 DATA "PRE-PAYMENT DISCOUNT": "QUANTITY DISCOUNT®
136G REM *#% READ IN DISCOUNTS *%%

Radio fhaek

PAGE 6 - 146

MODEL I/III COMPILER BASIC

KEYWORDS

TRS-80 ™
146 READ Dls D2
158 DaATA .85, @7
168
178 Qi%s " ~-— "3 Dixi@@; "L
186 PRk W e W Dyor 1@ LA
*#RUN
PRE-PAYMENT DISCOUNT ~—— 5 %
QUANTITY DISCOUNT —~=— 7 %
STOP LINE 18@
®
Radie fMaek

PAGE 6 - 147

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

READ from a disk file
Read Contents of Disk File

‘Sequential access files:
READ # file-unit; variable-list

Indexed-sequential access files:
READ # file-unit, KEY=key; variable-list

Direct access files:
READ # file~unit, KEY=record-number:; variable-list

'file-unit' is a numeric expression specifying
the input file. The file-unit is a551gned when
the file is opened.

'variable-list' specifies the target variables to
receive the data input from the file. Every
variable but the last must be followed by a
comma. There should be no punctuation after
the last variable. If no variables are supplied,
the current record is skipped.

'KEY=key' 1is used for input from indexed sequential
access files. 'key' is a string expression
containing the sort key.

'KEY=record-number' is used for input from direct
access files. ‘'record-number' is a numeric
expression specifying the record number.

This statement performs disk input of binary records written
with the WRITE statement. 'variable-list' must match the
'item-list' used when the record was written, in number and type
of data items. String variables must be large enough to contain
string data; integer data must be read into integer variables;
etc.

See "Data Files"” for a discussion of file access under RSBASIC.

Examples

Radie fhaek

PAGE 6 - 148

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

READ #1; A; B
Values for A and B are read from file-unit #1.
READ #2, KEY=NAMES; PAYRAT, EXEMPT$

PAYRAT and EXEMPT are read from the record indexed by the
contents of NAMES$, in file-unit #2.

READ #3, KEY=RECNBR%; PAYRAT, EXEMPT%

The same two items are read from record number RECNBR%, in
file-unit #%3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 149

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

—-= STATEMENT --

REAL
Define Variables as Real Numbers

REAL*8 letter~llst
~ *8 represents the elght byte length of real
numbers. This may be omitted.
'letter-list' is a sequence of 1nd1v1dual
. letters or 1etter~rangeS° the elements
in the list must be separated by commas .
A letter-range is in the form- ‘ ;
'letterl letter2’'.

REAL defines all variables, or all beginning with the letters
specified in 'letter-list' as real. However, a type
declaration character will override the REAL statement. Real
numbers are stored in 8-bytes and have 14 digits of precision,
although only 6 are printed.

REAL with a letter list may be used after an INTEGER or STRING
statement to override the integer or string defaults for certain
specified variable names. For example:

10 INTEGER
20 REAL A-C

causes all variables, except those beginning with the letters A
through C, to be integers. Variables beginning with A, B, and C
are real.

Note: For more information, see the chapter on BASIC Concepts.

Examples

REAL I, W-Z

Causes any variables beginning with the letters I or W through 2
to be real variables. However, I% would still be an integer
variable because of its type declaration tag.

Radie Shaek

PAGE 6 - 150

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Program

1@ INTEGER
20 REAL X
300A = 1.23
40 X = 1.33
30 PRINT "A EQUALS": A
& PRINT "X EQUALS"S X
#RUN
A EQUaLs 1
X EQUALS 1.23
STOP LINE &0

Radie fhaek

PAGE 6 - 151

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— STATEMENT --

REM
Comment Line (Remarks)

REM

REM instructs the Computer to ignore the rest of the program
line. This allows you to insert remarks into your program for
documentation. Then, when you or someone else looks at a
listing of your program, it will be easier to figure out.

The apostrophe (') may be substituted for REM.
Examples

REM This is a remark

REM
REM **khkkkkhhhkkhhkhkhrknk
]

This is a remark

All of these lines will be ignored when the program is executed.

X=1 : REM Initialize X
X=X+1 e REM Increment X

Both statements on the right side of the colon will be ignored
when the program is executed.

Sample Program

18 REM THIS I8 A REMARK
2@ PRINT "SAMPLE PROGRAM"
3@ REM IT WILL DO NOTHING TO THE PROGRAM

Radee Shaek

PAGE 6 - 152

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-= STATEMENT --

RESET BREAK
Disable the <BREAK> Handling Routine

RESET BREAK

RESET BREAK disables the <BREAK> handling routine you set up
with ON BREAK GOTO.

For example, you might use ON BREAK GOTO so that a person's
pressing the <BREAK> key will be handled a certain way at the
first of your program. However, in the second part of your
program you might want BASIC to handle <BREAK> in the normal
way. You may then use RESET BREAK to get BASIC to ignore the ON
BREAK GOTO statement.

Note: Also see ON BREAK GOTO

Example

RESET BREAK

Causes BASIC to ignore the previous ON BREAK GOTO. statement and
handle <BREAK> in the normal way.

Sample Program

See ON BREAK GOTO.

Radie

PAGE 6 - 153

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80

== STATEMENT --

RESET ERROR
Disable Error Handling

RESET ERROR disables an ON ERROR GOTO statement. Although ON
ERROR GOTO is disabled every time it is used, RESET ERROR
disables an ON ERROR GOTO statement that has not yet been used.

Note: Also see ON ERROR GOTO, ERR, ERROR, and RESET GOSUB.

Example

— s o s v

If you are using ON ERROR GOTO to trap a possible error in one
part of the program, but don't want any errors trapped in
another part of the program:

RESET ERROR

Would cause the ON ERROR GOTO statement to be ignored.

Sample Program

86 REM *#*% SAMPLE PROGRAM DEMONSTRATING RESET ERROR ##%
90 REM

120 ON ERROR GOTO 180

118 PRINT "INPUT A NUMBRER"

128 INPUT A

130 RESET ERROR

140 PRINT "THE NEXT ERROR IN THIS PROGRAM"

150 PRINT "WILL BE HANDLED IN THE NORMAL WAY"

168 PRINT A/0

Radie fhaek

PAGE 6 - 154

MODEL I/III COMPILER BASIC BASIC KEYWORDS

176 S8TOP
188 IF ERR <> % THEN ERROR ERR
190 PRINT "YOU MAY ONLY INPUT & NUMBER"
200 GOTO 106

RUN

INFUT A NUMBER

7 ER

YOU MaY ONLY INPUT A NUMBER

INPUT A NUMBER

7 43

THE NEXT ERROR IN THIS PROGRAM

WILL BE HANDLED IN THE NORMAL WAY

DIVISION BY ZERO ERROR LINE 1460
1. E+63

STOP LINE 170

Radie fhaek

PAGE 6 - 155

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT --

RESET GOSUB
Clear All Returns

Whenever GOSUB is used, the Computer must store the return
address. Normally, this return address is cleared when the
RETURN statement is executed.

However, if an error handling routine is executed, these return
addresses might never be cleared. By using the RESET GOSUB
statement in your error handling routine, BASIC will clear all
of these return addresses.

Note: Also see ON ERROR GOTO, GOSUB, and RETURN.

Examples

RESET GOSUB

This statement clears all return addresses.

Sample Program

10 REM %%% RESET GOSUB STATEMENT *%%
15 DIM S%1

2@ ON ERROR GOTO 1000

3@ PRINT "SELECT OPTION 1s 2s OR 3t "3
40 S% = INPUT$(Z)

50 0% = VALY(S$)

6B ON 0% GOSUB 100s Z00s 300

70 GOTO 30

100 PRINT "OPTION 1

110 RETURN

Radie fhaek

PAGE 6 - 156

MODEL I/III COMPILER

BASIC

2R
218
08
31@
1806
1@1e
R
SELECT
QPTION
SELECT
OFTION
SELECT
OPTION

PRINT "OPTION
RETURN

PRINT "OPTION
RETURN

RESET GOSUR
GOTO 36

ORFTION 15 2s
i
OPTION 14

e
OPTION 15 s
3

3“

OR

OR

OR

L

1

fd

BASIC KEYWORDS

TRS-80™

Radie fhaek

PAGE 6 - 157

MODEL I/III COMPILER BASIC

RESTORE
Reset Data Pointer

TRS-80™

BASIC KEYWORDS

-— STATEMENT --

RESTORE line number

When the Computer is READing data, it will read the data from
the DATA statements sequentially and quit reading when all the

data has been read.

only use each data item once.

RESTORE causes the next READ statement to start over in reading

This means that without RESTORE, you can

the first item in the first DATA statement again. If you

specify a line number it will start over reading the first data

item on that particular DATA line.

Examples

RESTORE 300

The next READ statement will begin reading the first data item
on the DATA statement at line 300.

RESTORE

The next READ statement will begin reading the first data item
on the first DATA statement line.

Sample Program

8@
QB
o
i@l
105
110
R
130

REM ¥%% SAMPLE PROGRAM DEMONSTRATING
REM

REM

REM %% READ IN PROMPTS %%

REM

DATA "TRY ANOTHER ANSWER"s "KEEP TRYING"s"IT

READ FROMPTS
IF FPROMPETE =

TLAGTY

THEN RE&STORE :

PAGE 6

Radie Shaek

- 158

GOTO

128

RESTORE %%%

BPEGING WITH AN

Al g "LAGT®

MODEL I/IITI COMPILER BASIC BASIC KEYWORDS
TRS-80™
143 REM
145 REM
15@ REM #¥% PEGIN GEOGRAPHY EDUCATION PROGRAM %%%
155 REM
168 PRINT "WHAT I8 THE CAPITAL OF TEXAS"
176 INPUT A%
180 IF A% <> "AUSTIN" THEN PRINT PROMPTS® @ GOTO 1Z@
19@ PRINT "VERY GOOD..THAT®S THE ONLY UESTION WE HAVE FOR NOW..."

Ry

WHAT IS THE CAPITAL OF TEXAE

7 AUG

TIN

VERY GOOD..THAT S THE ONLY QUESTION WE HAVE FOR NOW...
S5TOP LINE 19@

WHAT

IS5 THE CAFPITAL OF TEXAH

7 NEWARK
TRY ANMOTHER ANSWER

Radio fhaek

PAGE 6 - 159

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

~-— STATEMENT -~

RESUME
Terminate Error-Trapping Routine

RESUME terminates an error-handling routine by specifying where
normal execution is to resume. Place a RESUME statement at the
end of an error-trapping routine. That way later errors can
also be trapped.

RESUME causes the Computer to return to the statement in which
the error occurred. RESUME NEXT causes the Computer to branch
to the statement following the point at which the error
occurred.

Example

RESUME

If an error occurs, when program execution reaches the line
above, control will be transferred to the statement in which the
error occurred.

Sample Program

BB REM #%% BAMPLE PROGRAM DEMONSTRATING RESUME %%¥
S@ REM

100 ON ERROR GOTO 500

110 READ A

120 PRINT Ay
13@ GOTO 11@
14@ DATA 1s 25 As 4a Sy &

Radie fhaek

PAGE 6 - 160

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™
15%@ STOP
BREOIF ERR <= 7 THEN ERROR ERR
51@ PRINT "DO YOU WANT TO PRINT THE LIST AGAIN®
HeB INPUT R$
530 IF R$ = "NO" THEN STOP
H4@ RESTORE
5@ ON ERROR GOTO 500
S6HE RESUME
#R)
i = A 4
5 & DO YOU WANT TO PRINT THE LIST AG
ATN
7 YES
i = 3 4
5) DO YOU WANT TO PRINT THE LIST aAG
AIN
7 NO
STOP LINE 536

Radio fhaek

PAGE 6 - 161

MODEL I/III COMPILER BASIC BASIC KEYWORDS
Tl)

~- STATEMENT -~--

RETURN
Return Control to Calling Program

 RETURN

RETURN ends a subroutine by returning control to the statement
immediately following the most-recently executed GOSUB. If
RETURN is encountered without execution of a matching GOSUB, an
error will occur.

Example

RETURN

This line ends the subroutine, returning execution back to the
line immediately following the most recently executed GOSUB.

Sample Program

10 REM x%% SAMPLE FROGRAM DEMONSTRATING RETURN #¥%
0 REM

3@ PRINT "THIS PROGRAM FINDS THE AREA OF A CIRCLE"

4§ PRINT "TYPE IN A& VALUE FOR THE RADIUS"

S@ INPUT R

G GOBUE 60

70 PRINT "AREA IS"; A: GTOP

8O A = 3,14 % R % R

F@ RETURN

#L)

THIS PROGRAM FINDS THE AREA OF A& CIRCLE
TYPE IN & VaLUE FOR THE RADIUS

Toia

AREA T8 1617, 36

STOP LINE 7@

Radie fhaek

PAGE 6 - 162

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-- FUNCTION --

RND
Generate Pseudorandom Number

RND ‘
RND (number) :
'number' is a positive integer.

RND produces a pseudorandom number between 0 and 1. Programmers
commonly use it to introduce the element of chance in a program.

This random number is generated by using the current "seed”
number. When you specify a 'number' with RND, RND reseeds the
generator with that 'number'. To reseed the generator at
random, use the RANDOMIZE statement.

RND always returns a real number between 0 and 1. The examples
below show how to produce random integers higher than 1.

Examples

PRINT RND
Prints a random number between 0 and 1.

PRINT RND * 2
Prints a random number between 0 and 2.
PRINT INT(RND * 2)
Prints either 0 or 1 at random.
PRINT INT(RND * 2 + 1)
Prints either 1 or 2 at random.
PRINT INT(RND * 100 + 1)

Prints a random whole number between 1 and 100.

Radie fhaek

PAGE 6 - 163

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

A = RND

A random number between 0 and 1 is assigned to A.

Sample Programs

80 REM ¥%% GAMPLE PROGRAM DEMONSTRATING RND #%%
2@ REM

9% RANDOMIZE

108 X = INT(RND(@) # &) + 1

11@ Y = INT(RND(Q) % &) + 1

120 PRINT: PRINT "YOUR ROLL I5"5 X3 "AND" 3 Y3 "t ¥ 4 Y
*RUM

YOUR ROLL TS & AND 5 —eeeereeee 1
STOP LLINE 12@

Radie fhaek

PAGE 6 - 164

MODEL I/III COMPILER BASIC

TRS-80™

BASIC KEYWORDS

-- FUNCTION --

SEGS
Get Substring

string.

SEGS$ returns a substring of

'position' in the 'string'
Examples
If AS = "WEATHERFORD" then
PRINT SEGS(AS, 3, 2)
Prints 'AT'.
F$ = SEGS(AS$, 3)
Puts 'ATHERFORD' into FS$S.

Sample Program

_,t;QH,togthe,end of *

‘stri

'string’
and is

| ,ing constant or a strlng varlable.,f
the p051t10n where the substrlng
!string’ '
the number of characters in the
If omitted, the length from

ng !

is used.

The substring begins at

'length' characters long.

868 REM ¥#¥% SAMPLE PROGRAM DEMONSTRATING SEGH #x%
Q@ REM
18 PRINT "AREA CODE AND NUMBER (NNN-NNN-NNNN) "
110 INPUT PH$
120 EX$% = SEGE(PH$s5413)
13@ PRINT "NUMBER IS8 IN THE "3 EX$3 " EXCHANGE"
1460 GOTO 166
®
Radie Shaek

PAGE 6 - 165

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

SGN
Get Sign

SGN(number) . .
'number! is a numeric expression .

This function returns the sign of the 'number'. It returns a l
if the number is positive, 0 if it is a 0, and -1 if it is
negative.

Examples

PRINT SGN(5)
Prints 1.

PRINT SGN(-5)
Prints =-1.

PRINT SGN(O0)
Prints 0.

Y = SGN(A * B)

Determines the value of A * B and assigns the appropriate
number (-1, 0, 1) to Y.

PRINT SGN(N)

Prints the appropriate number.

Sample Program

Radie fhaek

PAGE 6 - 166

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM ##% SAMPLE PROGRAM DEMONSTRATIMG GGN #%#
@ REM

186 PRINT "ENTER A NUMBER"

113 INPUT X

128 OM BGNOX) -+ 2 GOTO 138. 148 150

130 PRINT "NEGATIVE" @ STOP

148 PRINT "ZERO" @ STOP

150 PRINT "POSITIVE" @ S5TOP

#FL)

ENTER A NUMBER
73

FOSITIVE

STOP LINE 150
#RU

ENTER & NUMBIER
7 -8

NEGATIVE
ETOP LINE 130

Radie fhaek

PAGE 6 - 167

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80™

—-— FUNCTION --

SIN
Compute Sine

. sSIiNtmumbery ...
‘ 'number' is a numeric expression.

SIN returns the sine of the 'number', which must be in radians.

To obtain the sine of X when X is in degrees,
.01745329251993).

The result is always a real number.

Examples

W = SIN(MX)

Assigns the value of SIN(MX) to W.
PRINT SIN(7.96)

Prints the value .994385.
E = (A * A) * (SIN(D)/2)

Performs the indicated calculation and stores

use SIN(X *

it in E.

Note: Trigonometric functions are not loaded when you load the

BASIC Compiler; they are loaded upon demand.

This might cause a

slight delay when using these functions, since they must be

loaded into the system first.

Sample Program

Radie fhaek

PAGE 6 - 168

MODEL I/III COMPILER BASIC

8e
20
140
110
120
138

*RU

REM
REM

PRINT "INPUT

INPUT A

PRINT "SINE I&"3
GOTO 100

TRS-80™

BASIC

KEYWORDS

*¥%% SAMPLE PROGRAM DEMONSTRATING SIN ##%

INPUT AN ANGLE IN DEGREES

7 30

SEINE IS 2.5
INPUT AN ANGLE IN DEGREES

7 -8

SINE I5-0.139173

PAGE

Radie fhaek

AN ANGLE IN DEGREES"

SINCA * . B1745329)

6 - 169

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

SQOR
Compute Square Root

SOR (number) ;
‘number ' is a non-negative numeric expression.

SQR returns the square root of the 'number'. The result is
always a real number.

If 'number is a negative value, SQR will print a warning and
then return the square root of the absolute value of ‘'number’.

Examples

PRINT SQR(9)
Prints 3.

PRINT SQR(6 + 3)
Prints 3.

PRINT SQR(155.7)
Prints 12.478.

Y = SQR(A * B)

Assigns the value of the square root of A * B to Y.

Sample Program

Radie Sfhaek

PAGE 6 - 170

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

B REM #4565 SAMPLE PROGHAM DEMONSTRATING SGR wex
Q@ REM
188 PRINT "NUMBER": "SQUARE ROOT". “KNUMBER": "BQUARE ROOTY
11@ FOR X = 1 TG 44 STEP 2
126 PRINT Xs BQR(X)s X -+ 1s SQROX + 1)
136 NEXT X
148 GOTO 148
* M
HUMBER SOUARE ROOT MUMBER SQUARE ROGT
1 2 1oaial

ool

3 1.73:205 4 =
id

4

7

LY I B 049
2 EGDTE & B & et T
1 B 1628
i3 S ddad
14 Su ThH LG
1é &

14 o 208
) & 47
o &, HPA4LE
4.,79583 ar 4. BYEYE

5 2b 5. 09902
5. 194615 28 5.2915

5.38514 17 D.ATTES
5.56776 A R Tt 2 1)

S3.74456 34 3. 83095
5. 71608 3 &

b BB27 4 38 Gu lhahl
b B45 41 b A2456
b 40310 4 b 4807 4
G BET 44 &4 & &E3AZE

ﬁkma“aj?;,‘_

PAGE 6 - 171

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

STOP
Stop Program Execution

~ STOP.

STOP terminates execution of your program at the line number you
specify. Normally, STOP is used to terminate execution at a
line other than the end of the program.

Unlike END, the compiler will compile the entire program
including the lines following the STOP statement. However, when
the program is executed, no lines after STOP will be executed.

Note: STOP is used in the same manner END is used with the
BASIC Interpreter.

STOP

This line is the last line executed. No lines following it are
executed.

Sample Program

BB REM ¥%% GAMPLE PROGRAM DEMONSTRATING STOP #%%
S0 REM
190 PRINT "DO YOU WANT TO CONTINUE®
110 INPUT &% 4
120 IF A% = "VEG" THEN 140
130 BTOP
140 PRINT "THE REST OF THE FROGRAM"
®
Radie fhaek

PAGE 6 - 172

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-— FUNCTION --

STRS
Convert to String Representation

STR$(number, 1mage) , :

number' is a numeric expresmon° ; o

‘ 1mage specifies the format of number e

~ can be a line number referrlng to an 1mage '
‘ statement, strlng varlable contalnlng the
1mage, or a string constant. If omitted,

‘number' is prlnted as a real number w1th

6 dlglts of prec1s1on.; , ~ o

STR$, the inverse of VAL, converts the 'number' to a string.
For example, if X = 58.5, then STR$(X) equals the string

" 58.5". Notice that a leading blank is inserted before 58.5 to
allow for its sign.

While numeric operations (such as addition, subtraction,
multiplication, and division) may be performed on X, only string
functions and operations may be performed on the string " 58.5".
You may use an image with STR$ to specify the format in which
you want the number printed. See PRINT USING for information on
how to construct an image. If you don't use an image, the

number will be printed in the real number format. See PRINT for
an explanation on how real numbers are printed.

Examples

AS$ = STRS$(100) & " DOLLARS"
Assigns "100 DOLLARS" to AS.

PRINT "NUMBER " & STRS(6+3)
Prints NUMBER 9.

S$ = STRS(X)

Radee fhaek

PAGE 6 - 173

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

TRS-80™

Converts the number X into a string and stores it in SS$.

PRINT STRS(10000000)

Prints 1.E+7. (See PRINT for an explantion of the E notation.)

AS$ = STR$(35592163)
Assigns "35592163" to AS.

PRINT STR$ (600000000, "#######4")
Prints "600000000".

PRINT STRS(60000000)
Prints 6.E+8,

PRINT STRS$(35.24, AS)

Prints "35.24" in the format contained in AS

Sample Programs

5 REM *%% GAMPLE PROGRAM DEMONSTRATING STR$ #%%
& REM
19 PRINT "INPUT ITEM NUMBER"

15 INPUT ITEM

2B OPRINT "INPUT COBT OF ITEMY
25 CTNPUT COBT

A PRICE = COBT % 2.5

4@ CODE#$ = "I" & STR$(ITEM) & "C" & BTR$(COBT) & "P"

5@ PRINT "ITEM I8 NOW CODED a5 "5 CODE$ =

#RU

INPUT ITEM NUMBER

T4

INPUT COST OF ITEM

T 4,95

TTEM I8 NOW CODED AS T4C4.95P12. 375
STOP LINE 56

SBTOP

&

STR% (PRICE)

Radie fhaek

PAGE 6 - 174

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

1@ PRINT "TYPE A NUMRER WITH 14 DIGITS OR LESSY
2B INPUT &
AR PRINT "THE NUMBER WITHOUT THE FORMAT I8 PRINTED "3 STR$(A)
40 PRINT "THE NUMBER WITH THE FORMAT 7@ Shdadad 16 s
S PRINT STRS (ay " bbb o b8)

#RU

TYPE & NUMBER WITH 14 DIGITS OR LESS

7 THR.THLB4E

THE NUMBER WITHOUT THE FORMAT I& PRINTED :789.767

THE NUMBER WITH THE FORMAT 7 i, $Hgd8448° 16 1789, 7665420

GTOP

L INE

50

Radio fhaek

PAGE 6 - 175

MODEL I/III COMPILER BASIC BASIC KEYWORDS

26 - ™

-- STATEMENT --

STRING
Define Variables as Strings

STRING*length letter llst : : ~ .
*'length' is the numoer of characters wﬁlch w1ll be,

allotted for each string variable.
If omitted, all string varlables will

~ be stored as 255 characters (255 bytes).

'letter list' is a seguence of individual letters
or letter=- rangeb,fthe elements in the list must
be seoatated by commas.~'A:letter~range is in the
form-‘ : : '

~ letterl —*1etter2~

STRING causes all variables in the program to be classified as
string unless a type declaration tag is used. All string
variables will be stored as if they have 255 characters unless
you specify a length.

If you use 'letter-list', only variable names beginning with
those letters will be classified as string.

Note: For more information, see the chapter on BASIC Concepts.

Exanmple

STRING C, L-Z
.Causes any variables beginning with the letters C or L through Z
to be string variables, unless a type declaration is added.

Each of these variables will be stored as a 255-character
string.

STRING

Causes all variables to be 255-character string variables,
unless a type declaration tag is used.

STRING*5

Radio fhaek

PAGE 6 - 176

MODEL I/IITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

Causes all variables to be 5-character string variables, unless
a type declaration tag is used.

STRING*1 A-F

Causes all variables beginning with the letters A through F to
be l-character string variables unless a type declaration tag is
used.

Sample Programs

L RizM #E STRING STATEMENT %%
SEOETRING®&S L

B0 STRINGxL O

40 PRINT "TYFE IN A MEESAGE®

SEOTMPUT L.

M PRINT "TYFE IN A& SINGLE CHARACTER "3
TEOG = TNPUTE0L)
B PRINT "THE ME

5 Ty oL
S PRINT "THE CHARACT

®RL

TYPE IN A ME
TOTHIS TS A TEST
TYPE IN & SINGLE CHARACTER &
THE MESSAGE WaS: THIS 16 6 TEBY
THE CHARACTER WAL: &

STOP LINE 9@

Radie fhaek

PAGE 6 - 177

MODEL I/III COMPILER BASIC BASIC KEYWORDS
ﬁﬁ@j@@

--= FUNCTION —--

STRINGS
Return String of Characters

STRINGb(length, character) L
‘length’' is numeric expression in the vange of
0 to 255.
'character' is a strlng constant or a string
' varlable

STRINGS is useful for creating graphs or tables, where you want
to print a large string of the same characters. It returns a

string of the character you specify. How many characters are in
the string depends on the length you specify.

Examples

PRINT STRINGS (10, "-")
Printsg —-—-—=—=—m=—= .
BS = STRINGS (25, "X")
gsstring of 25 X's - XXXXXXXXXXXKXXXXKXXXXKXXX - is stored as

Sample Program

aé REM #xE DAMPLE PRGRAM DEMONETHATING STRINGS ¥
@ REM
102 PRINT CHR$OZE) s CHR$(31) ¢+ X = @

THG PRINT CHTO@: 2601 "SALES OF E&CH ITTEM®

a2 FOR T = 1 TO &

138 Rizalh & 8 X o= X + 2

146 FPRINT CRT(Xs@)s5 "ITEM "3 135 " "5 ETRIMGE{As "X")
150 NEXT I

160 GOTO 148

178 DATA 15944950 28y 2248

Radie Shaek

PAGE 6 - 178

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- STATEMENT -~

SUB
Name and Define Subprogram

SUB subname ; dummy varlable llSt
! subname ' LS a l to 6 character strlng constant
'dummy variable list' consists of any klnd of
varlables separated by commas, ;

SUB must always be the first statement in a subprogram. It
names the subprogram and lists its dummy variables. These dummy
variables are given the values of whatever variables or
constants are passed from the main program in the CALL
statement.

For instance, if the SUB statement lists the dummy variable X
(SUB "SUB": X), and the CALL statement sends it the value Y
(CALL "SUB"; Y), X will be given the value Y.

The type of dummy variables in the SUB statement must match the
type of variables in the corresponding CALL statement.

Examples

SUB "DEPREC"; A, B
This is the first line of the subprogram named "DEPREC". The
dummy variables are A and B. They will be contain the value of

whatever variables, expressions, or constants are sent to them
by the CALL statement in the main program.

SUB "TABLE"; AS$, BS$, C, D, E(,)

Initiates and defines the subprogram named "TABLE". The dummy
variables are AS$, BS, C, D, E(,).

SUB "GRAPH"; HORZ, VERT

Initiates and defines the subprogram named "GRAPH". The dummy
variables are HORZ and VERT.

Radie fhaek

PAGE 6 - 179

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

Note: For more information on subprograms see the Section on
Segmenting Programs. Also see CALL, END, and SUBEND.

Sample Program

86 REM *#%¥% SAMPLE PROGRAM DEMONSTRATING SUB ##%
@ REM

108 A% = »"817/927-58546"

110 B4 = "4H12/633-3811"

120 PRINT "TELEPHONE NUMBERS &
130 FRINT a%: PRINT B$

148 CaAlL "AREA": A$

1563 CAlLL "aREA": B%

168 PRINT "THE AREA CODES ARE "3 A%s5 " AND "5 B%
176 END

180 SUBR "AREA"S T$

190 T4 = SBEGH(THs 1+3)

20@ SUREND

#RU

TELEPHONE NUMBERS =
B17/927-5856

LH12/633-5811

THE AREA CODES ARE 817 AND &1Z
5TOF LINE 17@

Radio fhaek

PAGE 6 - 180

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

SUBEND

~— STATEMENT --

End Subprogram

SUBEND

SUBEND is the last statement in the subprogram. It returns
execution back to the statement in the main program immediately
following the statement which CALLed the subprogram.

Example

SUBEND

Returns control back to the main program.

Note:

For more information on subprograms, see the section on

Subprograms. Also see CALL, END, and SUB.

Sample Program

oe

gt}
1@
116
120
136
148
158
1é&6
178
186
Lea
an

REM wag BAMPLE PROGRAM DEMONETHRATING SUBEND ®4%
R
Xo= RND{E

Y= RNDCED

PRINT "BEFORE EXECUTING THE SUBROUTINE"
PRINT "X ="§% X3 " AND Y ="3% Y
CALL "RAMD": X

Cald. "RAMDY S Y

FRINT "AFTER EXECUTING THE BUBROUTINE"
FRINT "X ="3 X3 " AND ¥ ="35 Y

PRINT "TRY IT AGAIN"S

IMPUT R#%

IF Re$ = "YEB" THEN 106

Radie fhaek

PAGE 6 - 181

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

@ END

SUE "RAND"S A

A o= CNTOS % 1@@E)
SUBERND

-- STATEMENT =--

SWAP
Exchange Values of Variables

_ SWAP variablel, yariablez

The SWAP statement allows the values of two variables to be
exchanged. Either or both of the variables may be elements of
arrays. Both variables must be the same type or a Type Mismatch
error will result.

Example

SWAP Fl1, F2

The contents of F2 are put into F1l, and the contents of Fl are
put into F2.

Sample Program

1@ REM 6% GAMPLE PROGRAM DEMONSTRATING SWAF ¥sw

O REM

G REM #ag BURBLE SORT USING SWAP wxs

44 FEM

RO ITNTEGER A-25 DIM A58

HE B = @

TEHOPRINT "HERE ARE 5@ NUMBERS BPETWEEN 1 AND 1@@°

S FOR T = 1 TO 5@ ALY = CVTORNDO@))1@8a-+1)8 PRINT A1)y & NEXT

S MT: PRINT: PRINT "NOW SORTING DaTa. START TIME = "5 TapR{48)s TIMES
Tl F o= @s K o= @ POREM OF o is set when & swar 1 mades Wods counter
1@ RiEM #wd swar and zet FoeEe

Radie fhaek

PAGE 6 - 182

MODEL I/III COMPILER BASIC

BASIC KEYWORDS

118 IF
120 K o=
139 REM
136 IF F =
146 PRINT
158 PRINT:
160 FOR I
* R
HERE ARE
50 30
&8 35
b bR

5

AIRY = AR}
K o+ 1 IF K
®EE Go bhro
I THEN 180
TDATA SORTED.
FRINT "HERE
I TO 5@ PR

il

58
33
7

15

NUMEE RS
@ 94 97
G5 ZR B4

163

a1 3w £

MOW SORTING
DAETHS BORTED.

END TIME =

ORDER:

MERE IT IS IN
7 17 18

A A 1B 1é
536 36 A3y 39 4
P 5 T A TR 1) N 17 v Iy
21 STORP LLINE 168

18
41
£33

THEN SWap
S8 THEN 116

SETHEEN 1
N
ig

TRS-80™

ASUKYs ALY

udh data avain until F
TIME == "3
M ORDER: ¢

MEXT 1

END
IT I8
INT A{I)s

AN
B
4t

35

i@a
448
75

9

1&
7@
3y

69
&0
10

34
17
53

Bleqzeh
A1 s 4235

IME =

@
4t
G

Radie fhaek

-

TABR (4B 5

33
&

Cr)

= 1

= E¥E

TIMES

49 4%
& 7H

33
(=37
32

&8
75
93

1)
7@

9h 9n 97

3

9

PAGE 6 - 183

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™
~— STATEMENT --
SYSTEM
Return to TRSDOS
SYSTEM
SYSTEM will stop RSBASIC and return you to TRSDOS READY. The

resident BASIC program will be lost.

Example

100 SYSTEM

Radie fhaek

PAGE 6 - 184

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

-- FUNCTION --

TAB
Tab to Position

TAB(number) : ; , -
,,':'number' is a numeric expressxon. If its value
~ exceeds 255, it is interpreted in modulo 256. A value
~of 1 represents the first column on the dlsplay, You
cannot TAB backwards (the TAB will be ignored).

TAB used in a PRINT or LPRINT statement moves the cursor to the
column position specified. TAB may only be used in a PRINT or
LPRINT statement.

Note: See CRT for an illustration of the 64 column positions on
the video display.

Examples
PRINT TAB(5);"TABBED5";
This prints:

TABBED 5

Sample Program

—— s - — i

8B REM #%% SAMPLE FROGRAM DEMONSTRATING TAB #%%

9% REM

100 PRINT CHR$(Z28)s5 CHR#%(31)

11@ PRINT TaR{Z)s "CATALOG NOL"35 TAE(LE) 3 "DESCRIPTION OF ITEM"S
1200 PRINT TARC3ED)Ys "QUANTITY": TABR(51)3; "PRICE PER ITEM®

CATALOG NO. DESCRIPTION OF ITEM QUANTITY FRICE PER ITEM

STOP LINE 120

Radie Sfhaek

PAGE 6 - 185

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-- FUNCTION --

TAN
Compute Tangent

 TAN(number)

_ 'number! is a numeric expression. .

TAN returns the tangent of the 'number'. The number must be in
radians. To obtain the tangent of X when X is in degrees, use
TAN(X * .01745329251994). The result is always a real number.

Examples

L = TAN(M)
Assigns the value of TAN(M) to L.

PRINT TAN(7.96)
Prints the value -9.39696.

Z = (TAN(L2 - L1))/2
Performs the indicated calculation and stores the result in Z.
Note: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a

slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

Radie fhaek

PAGE 6 - 186

MODEL I/III COMPILER BASIC BASIC KEYWORDS
‘‘‘‘‘ TRS-80™
80 REM *#% SAMPLE PROGRAM DEMONGTRATING TAN #%#
9@ REM
100 PRINT "INPUT ANGLE IN DEGREEZ"

114
1z@
1330
140
#RU
INPUT
7 3@

INPUT ANGLE

T = TANCANGLE * .@17453:29)
PRINT "TANGENT 1I5"35 T
GOTO 100

ANGL.E IN DEGREES

TANGENT I8 ©.57735

INPUT

T 4%

ANGLE IN DEGREES

TANGENT 16 1.

Radie Shaek

PAGE 6 - 187

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™

~— FUNCTION =--

TIMES
Get the Time

omrimEs

This function lets you use the time in a program.
The operator sets the time initially when TRSDOS is started up.
When you request the time (with PRINT TIMES), BASIC will supply
it using this format:

14:47:18

which means 14 hours, 47 minutes, and 18 seconds (24-hour clock)
or 2:47:18 PM.

To change the time, use the TRSDOS command, TIME. For example:
TIME 13:30:00 (You can only do this under TRSDOS.)

sets the time to 13 hours and 30 minutes (and 0 seconds) or 1:30
PM.

Even if the operator never sets the time, TRSDOS will record the

time at 00.00.00 when the system is started up and keep a record
of how much time has passed.

Examples

PRINT TIMES
Prints the time.
AS = TIMES

When this line is reached in your program, the current time is
stored as AS.

Radie fhaek

PAGE 6 - 188

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

B RER #ud SAMPLE PROGRAM DEMONSTRATING TIMES xex

G REM

188 1% = TIMES ¢ IF SEGHE(T%:1:5) = "1@:15Y THEN 120

118 &OTo 106

128 PHRINT "TIME IS 1@:15% A M. - TIME TO PICK UP THE MAILY

Radie fhaelk

PAGE 6 - 189

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— FUNCTION --

VAL
Evaluate String

'string' is a string constant or a string variable. =

VAL is the inverse of STR$. It converts the characters in the
'string' to their numeric value. VAL returns a real number.
VALS$ returns an integer.

VAL quits looking for numeric characters as soon as it hits a
character that has no meaning. For instance VAL(10Z5) returns a
10 -—- it stopped its search when it encountered the Z and
returned 10, the current numeric value.

If the string contains no numbers or is null (has a length of
zero), VAL returns a 0.

Examples

PRINT VAL("100 DOLLARS")
Prints 100.
PRINT VAL("100 DOLLARS AND 50 CENTS")
Prints 100.
PRINT VAL("1234E8")
Prints 1234E+8 (1234 * 10 ** 8)
PRINT VAL("ONE")
Prints 0.
X = VAL("12.58")

Assigns the number, 12.58 to X.

Radie Sfhaek

PAGE 6 - 190

MODEL I/III COMPILER BASIC BASIC KEYWORDS
TRS-80™
A = VAL(BS)
Assigns the numeric value of B$ to A.
PRINT VAL%("12.58")
Prints 12
Sample Program
8@ REM #¥% SAMPLE FROGRAM DEMONSTRATING VAL %%#
Q@ REM
188 REM *#% WHAT SIDE OF THE STREET 7 %%
118 REM #H% NMORTH I8 EVEN: S0UTH I8 ODD ®%#%

120 REM

T35 PRINT "ENTER THE ADDRESS (NUMBER AND

138 LINE INPUT AD$
148 € = CVIVAL(ADS)Y/2) % 2
15@ PRINT Cs VAL (AD$)

1648 IF C = VAL{ADS) THEN PRINT "NORTH
178 PRINT "SOUTH SIDE" & GOTO 1308
#RU
ENTER THE ADDRESS (NUMBER AND STREET)
7 54B8 JANE ANME
L2408 5608
NORTH SIDE
ENTER THE ADDRESES (NUMBER AND STREET)
7 3215 OARKLAWN
d214 3215
H5OUTH SIDE
®
Radie fhaek

PAGE 6 - 191

SIDE"

STREETY *®

GOTO

e
g}

MODEL I/ITI COMPILER BASIC BASIC KEYWORDS

w

TRS-80

-- STATEMENT --

WRITE to a disk file
Write to Disk

Sequentlal access flles.,’"e‘* .
WRITE # flle—un1t=~1temwllst

Indexed sequentlal access flles~‘°7w.
WRITE # f11e~un1t KEY—&ey, 1tem—llst

‘ Dlrect access flles. o ' . L
', WRITE # f11e~un1t, KEY record number, 1tem llst

, ’flle unlt"‘ls a numerlc expreb81on soec1fy1ng .
‘ the output file. The flle—unlt lS a851gned when
_the file is opened.._f~ - ,
1tem -list'! contains expre381ons to be‘evaluated
~and output to the disk flle.f;Ever
fthe last must be followed by a comm_” ..
There should . be no punctuatlon after tqe%lastV*-*~~
_item. If ltem list is empty, the record’is
, ‘written as a deleted record. -
~ 'REY= =key ' {‘1s used for output to 1ndexed sequentlal
. access flles.f"key is a etrlng expre351on :
- contalnlng the sort key i -
‘KEY~record -number' is used for output to dlrect
, access flles,;, record number' is a numerl“;g
expre881on Spe01fy1ng the record number,,s;~

This statement performs disk output of binary records for
subsequent input by an analogous READ statement. 'item-list’

must match the '"item-~list' to be used when the record is read,
in number and type of data items.

See "Data Files™ for a discussion of file access under RSBASIC.

Examples

WRITE #1; A+B

Radie fhaek

PAGE 6 - 192

MODEL I/IIT COMPILER BASIC BASIC KEYWORDS
TRS-80™

The value of A+B is written to file-unit #1.
WRITE #2, KEY=NAMES$: PAYRAT, EXEMPT$%

PAYRAT and EXEMPT are written to the record indexed by the
contents of NAMES$, in file-unit #2.

WRITE #3, KEY=RECNBR%; PAYRAT, EXEMPT$%
The same two items are written to record number RECNBR%, in

file—-unit #3.

Sample Program

See the chapter on data files.

Radie fhaek

PAGE 6 - 193

MODEL I/III COMPILER BASIC BASTIC KEYWORDS

TRS-80™

-~ FUNCTION --

XOR
Calculate Exclusive OR

‘AOR(number, number)
'number' is any 1nteger in the range of —32768 to
32767. ~

XOR is a logical operation performed on the binary
representations of the two 'numbers®. XOR compares the bits of
the two numbers to see if they are identical or different. A
binary 0 is returned if the two bits are identical; a 1 is
returned if they are different: '

First Second Bit
Number Number Returned
1 1 0
1 0 1
0 1 1
0 0 0

The binary number returned is represented as an integer.
If 'number' is a real number, BASIC will convert it to an

integer.

Examples

PRINT XOR(72,32)

Prints the result, 104. The operation is performed on the
binary representation of the two numbers:

Integer Binary
Representation
72 01001000
32 00100000
104 01101000

Radie Shaek

PAGE 6 - 194

MODEL I/III COMPILER BASIC BASIC KEYWORDS

TRS-80™
PRINT XOR(104,32)
Prints 72:
Integer Binary
Representation
104 01101000
32 00100000
72 01001000

IF XOR(255,A) >= 128 THEN PRINT "SET BIT 8"

Performs the XOR operation on 255 and the value of A. If the
condition is true, the statement is printed.

Note: Also see OR and AND.

Sample Program

80 REM wEE HAMFLE PROGRAM DEMONSTRATING XOR %%
@ REM

188 PRINT "INPUT A LOWER OR UPPER CASBE LETTER®"

11@ INFPUT A%

120 B% = CHR$XORIABC(AS) 32D

138 PRINT B4

148 GOTO 168

#RL)

THPUT A LOWER OR UPPER CASBE LETTER
7 R

[

INFUT A LOWER OR UPPER CASE LETTER
7K
b

Radie fhaek

PAGE 6 - 195

Section 3

CAT. NO.
26-2204

Using BEDIT to Create and
Edit BASIC Socurce Files

ek B] sortware |

CUSTOM MANUFACTURED IN USA BY RADIO SHACK,; A DIVISION OF TANDY CORP

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

TABLE OF CONTENTS

SECTION 3. BEDIT -- SOURCE PROGRAM EDITOR
INTRODUCTION . . & o & o o o o o o o o of = 2
SOURCE FILE FORMAT . . ¢« ¢ o o o o o« o o1 — 2
TO START THE EDITOR . . « o &« o o o« o o1 = 3
MODES OF OPERATION . . « « « « « « o . .7 - 4
USING THE COMMAND MODE . . . & e o o o1 =5
SPECIAL KEYS IN THE COMMAND MODE e o o o1 = 6
COMMANDS . . . & . e & o o & o o1 — 8

B (PRINT BOTTOM LINE)7 - 8
C (CHANGE) + « ¢ « o « o « « o o o .7 -8
D (DELETE) . o o o o o o o o o o o« o1 =9
E (EDIT) « « « o o o o « o o o « o .7 =9
F (FIND) o « v o o« o o o o o o o o 7 =11
H (HARD COPY) . « + « ¢ o o . . 7 =11
I (INSERT) « « « = o « « o o « o o 7 = 12
L (LOAD FROM DISK) o o o o o o o o 1 - 13
M (MEMORY UShD/FREE) e o o o o o « 1 = 13
N (RENUMBER)* . . e o e o o o o 1 = 14
P (PRINT TO DISPLAY) e o s s o o o 1 - 14
Q (QUIT SESSION) . . + « « « . . . 7 =15
R (REPLACE) . . « « « « « « « « . 7 = 15
T (PRINT TOP LINE) . . . « o « o« . 1 — 16
W (WRITE TO DISK) . e o o o o o 1 =16
X (CHANGE WITH PROMPTS) 7 - 16

Note: Do not use the renumber command inside your program text,
unless you are not concerned with line references (GoTO,
IF...THEN..., GOSUB, etc.). To renumber your program properly,
use the compiler BASIC RENUMBER command.

Radio fhaek

PAGE 7 - 1

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

INTRODUCTION

BEDIT lets you create and edit BASIC source files (the files
that are input to the BASIC Compiler).

Capabilities and features:

. Allows you to load in ("chain") multiple source files
. Single-key abbreviations for many commands
. Powerful intra-line editing mode like the edit mode in
Model I/III Interpreter BASIC
. "M" command informs you of memory used/free at any time
. Global string find/change commands
Editor provides line numbers in the range 0-65535

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
BASIC compiler, as follows:

1. Files are variable-length record (VLR) type, as described in
the TRSDOS Reference Manual.

2. BEach record in the file corresponds to one line of source
program. The first six data bytes (after the length-byte) in a
record represent the line number in ASCII form followed by a
blank space. The carriage return (<ENTER>) used to terminate
the line during line insertion is not stored.

3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.

4, No end-of -text code is stored in the data file.

Radie fhaek

PAGE 7 - 2

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

TO START THE EDITOR

The editor program is included on the BASIC package diskette.
It has the file name BEDIT.

To use the editor, put the BASIC diskette into one of your
drives (drive 0 for single-drive users), and under TRSDOS READY,

type:
BEDIT
The editor will start up with the message:

TRS-80 Basic Editor Ver. v.r
Copyright (c) 1980 Tandy Corp.

>

Where v 1s the version and r is the release number. The >
indicates you are in the command mode.

Radie fhaek

PAGE 7 - 3

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

MODES OF OPERATION

There are three modes of operation:
COMMAND, for entering the editor commands
. INSERT, for entering your text lines
. EDIT, for interactive editing of a line of text

COMMAND MODE

The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <BREAK>.

INSERT MODE

You enter text one line at a time; a line consists of up to 255
characters, including the five-digit line number provided by
BEDIT. Line numbers can range from 0 to 65535.

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the five-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the BASIC Language Reference Manual for column-field
uses in BASIC source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <BREAK>. See the I Command for details.

EDIT MODE

There are many powerful edit sub-commands -- identical in most
cases to those in Model I/III Interpreter BASIC's Edit Mode.
There is also a sub-edit insertion mode in which the keys you
type are inserted into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

Radie Sfhaek

PAGE 7 - 4

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"”
All refer to the BASIC source program currently in RAM.

"current line"

The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is
set to the beginning of the text.

"increment"

The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line~reference"
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol Meaning
Beginning line of text (lowest-numbered line)
. Current line
* Last line of text (highest-numbered line)

"line-range"
This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample

Command Meaning

P100 Prints line 100 only

P100:300 Prints all lines from 100 to 300

P#:. Prints all lines from beginning to current

Radie fhaek

PAGE 7 - 5

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

"delimiter™
A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

P ESs s () +, - /s =002

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use... Marks this string...
"THIS " MARK' THIS " MARK
/X'8000°%/ X'8000"
&N & TTmEETT (seven blanks)
(The "7" symbol represents a blank space. It is used only where

necessary for emphasis or illustration.)

<BREAK>
Press this key to cancel the command you are entering, or to
abort a command which is currently being executed.

->
Advances the cursor to the next eight-column boundary
(boundaries are at columns 8, 16, 24, ...)

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

{up—arrow>
Pressing this key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

Radie fhaek

PAGE 7 - 6

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

shift <-
Erases the command you are entering.

<@>
Pauses H and P commands. Press any other key to continue.

Radie fhaek

PAGE 7 - 7

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
COMMANDS
Note: Spaces are not significant in command lines. For example,
P 1 :5
has the same effect as
P1l:5

The P command is explained later on.

B

Displays the bottom line (last line in the text area).

C/search-string/replacement-string/n

Finds, changes, and displays the first n lines that contain
search-string. 1In each of these lines, search-string is changed
to replacement-string. ONLY THE FIRST OCCURRENCE OF
search—-string IN A SINGLE LINE IS COUNTED AND CHANGED. If the
end of text is reached before n finds, the message "string not
found” will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ 1is a sequence of characters delimited by
a matched pair of characters from the set:

PP E S e s " ()R +, - /s = >07

replacement-string/ 1is a sequence of characters terminated
by the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can
be a number or an asterisk. The asterisk means change
and list all occurrences. If n is omitted, only the
first occurrence is changed and listed.

Sample
Commands Notes
C/VAR=/NET=/ Changes the first occurrence of

Radie Sfhael

PAGE 7 - 8

TRS-80 MODEL I/III BASIC BEDIT

"VAR=" to "NET=" in the first
line that contains it.

C"VAR="NET=" Same as above.

C/RETRY/R/4 Changes the first occurrence of
"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*

Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA" to "" (null string)
i.e., deletes the first "EXTRA" in every
line that contains it.

D line-range

Deletes lines in the specified range. If line-range is omitted,
the current line is deleted.

Sample

Commands Notes

D. or D Deletes the current line.

D2 Deletes line number 2.

D98:115 Deletes lines found in the range 98 to
115.

D1000:* Deletes all lines numbered 1000 or

higher to end of text.

‘E line-reference

Starts edit mode using the specified line. If line-reference is
omitted, the current line is used.

Edit sub-commands:
<ENTER> Ends editing and returns to command mode.
shift<up-arrow> Causes escape from sub-edit insertion
(X, I, and H sub-commands) and returns to

edit mode.

n <SPCBAR> Advances cursor n columns.
If n is omitted, 1 is used.

Radie Sfhaek

PAGE 7 - 9

TRS-80 MODEL I/III BASIC BEDIT

nD

nC

nSc

nKc

TRS-80®™

"Lists" working copy of the line and
starts a new working copy.

"Extends" line: positions cursor to end
of line and enters sub-edit insertion mode.
Use shift<up-arrow> to escape to edit mode.

Enters sub-edit "insertion" mode at the
current cursor position; use shift<up-arrow>
to escape to edit mode.

("Again") Cancels changes and starts a new
working copy of the line.

("End") Saves edited line and exits to
command mode, > prompt.

("Quit") Cancels changes and returns to
command mode, > prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use shift<up-arrow> to
escape to edit mode.

"Deletes" n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

"Changes" next n characters from the current
cursor position, using the next n characters
typed. If n is omitted, 1 is used.

("Search") Move cursor to nth occurrence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

("Kill") Deletes all characters from current
cursor position up to nth occurrence

of character ¢, counting from current

cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>

to see the line with characters deleted.

Radie fhaek

PAGE 7 - 10

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

F/search-string/n

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "string not
found" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "string
not found" is displayed.

/search-string/ 1is a sequence of characters delimited by
a matched pair of delimiters chosen from the set:
P"E S se" ()Xt -0 /s K =>02
n Tells the maximum number of "finds" you want. n can be a

number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is

listed.

Sample

Commands Notes

F/VAR=/ Finds and displays the first line that
contains the string "VAR=".

F"VAR=" Same as above.

F/RETRY/4 Finds and displays the first eight lines
containing at least one occurrence of
"RETRY".

F/MISPELING/* Finds and displays every line containing

at least one occurrence of "MISPELING®".

H line-range

("Hard-copy") Lists to the printer all lines found in the
specified range.

The printer should be initialized (with FORMS) before you
execute this command.

Radio fhaek

PAGE 7 - 11

TRS-80 MODEL I/III BASIC BEDIT

Sample

Commands Notes

Hi:* Lists all lines to the printer.

H7020 Lists line 7020 to the printer.

H672:800 Lists all lines found in the range 672 to

800.

I start-line, increment
Starts the insert mode.

start-line is a line-reference telling the editor where to begin

inserting into the text. If omitted, the current line
is used.

;increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

If start-line is already in use, the editor will start with the
next line number (start-line + increment).

Special Keys in the Insert Mode
-> Advances the cursor to the next eight-column
boundary (8, 16, 24, ...).

shift <- Erases the line and starts over.
<= Backspaces the cursor and erases the character.
<ENTER> Marks the end of the current line. The editor will

store the current line and start a new one, using
increment to generate the next line number.

CAUTION: This does NOT renumber your line references! See N
command.

Sample
Commands Notes
I Start inserting at current line number,

Radio fhaek

PAGE 7 - 12

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

using current increment.

I,1 Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1.

I45,2 Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.

1100 Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

L filespec

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the o0ld, or clear out the old first.

filespec is a TRSDOS file specification for a VLR text file. The
file may have been created by this BASIC editor or by
another means. However, it must be in the BASIC source file
format. (See Source File Format.)

Note: If you chain one file onto the end of another, the line
numbers for the combined file will start at the previous

first-line and will be incremented by the current increment.

Sample

Commands Notes

I. DEMO/BAS:1 Load DEMO/BAS from drive 1.
L XDATA Load XDATA

M

Prints the number of characters in the source text (excluding
the editor's line numbers) and the amount of memory free for
text storage.

Sample

Command Notes

M A typical response in a 48K system
might look like this:
00121~ TEXT

39222~ MEMORY

Radie fhaek

PAGE 7 - 13

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™

Meaning you have 121 bytes of text, and
39222 free bytes of memory available.

N start-line,increment
Renumbers the entire text.

Note: Do not use the renumber command inside your program
unless you are not concerned wth line references (GOTO,
IF...THEN ..., GOSUB, etc.). To renumber your program properly,
use the Compiler BASIC RENUMBER command.

start-line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers. If
omitted, the current increment is used.

After renumbering, the current line is set to the highest line
number in the renumbered text.

Samp le
Commands Notes
N Renumbered text will start with current

line; successive lines computed with
current increment.

N10O Renumbered text will start with line 100;
successive lines computed with the
current value of increment.

N100O, 25 As above; line numbers at increments
of 25.

N,100 Renumbered text will start with current
line number; line numbers at increments
of 100.

P line-range

Prints the specified lines to the display. If line-range is
omitted, 14 lines starting at the current line are displayed.

Radie fhaek

PAGE 7 - 14

TRS-80 MODEL I/III BASIC BEDIT

TRS-80™
Sample
Commands Notes
P Prints 14 lines starting at current
line.
P233 Prints line 233.
P. Prints the current line.
P* Prints the last line.
P140:615 Prints the lines within the specified

range. Lines 140 and 615 don't have to
be existing line numbers.

Q

Terminates session and returns to TRSDOS. The source text is
not written to disk.

R line-reference, increment

Replaces contents of the specified line and continues in insert
mode. If line-reference is omitted, the current line is used.
If increment 1is omitted, the current increment is used.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.

After you press <ENTER>, the editor will continue in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <BREAK>.

Sample
Commands Notes
R125,3 Prompts you to insert replacement

text for line 125. Subsequent line
numbers will be generated with an
increment of 3.

R* Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

Radio fhaek

PAGE 7 - 15

TRS-80 MODEL I/III BASIC BEDIT
TRS-80™

T

Displays the top line (first line in the text area).

W filespec
Writes the text in RAM into the specified file.

filespec is a TRSDOS file specification. If file already
exists, its previous contents will be lost.

Sample

Commands Notes

W DEMO/BAS:1 Save DEMO/BAS onto drive 1.

W XDATA Save XDATA/BAS onto first available drive.

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line
will be changed; any other answer leaves the line unchanged. 1In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes
X/MISPELING/MSP/*

Changes the first occurrence of
"MISPELING" to "MSP"

in every line that contains it, but asks
you to confirm each change before it

is made.

Radie fhaek

PAGE 7 - 16

Section 4

Programmer’s | CAT. NO.
- ' 26-22
Information >

information on the Stand
Alone Runtime System,
Memory Usage, Assembly
Language, Subprograms,
and File Formats

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORP.

TRS-BO MODEL I and MODEL III

R&BASIC
FROGRAMMER ‘S INFORMATION
SECTION

JANUARY 14, 1981

COPYRIGHT NOTICES

TRG-80 MODEL I and MODEL ITI RSBASIC PROGRAMMER 'S
INFORMATION SECTION

(C) 1981 by Ryan—-McFarland Corporation; Licensed to Tandy
Corporation. All rights reserved.

Reproduction or wuse, without exXpress permission, of
editorial or pictorial content in any manner is prohibited.
While every precavtion has been taken in the preparation of
this manual, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained
herein.

TABLE OF CONTENTS

Page

I. INTRODUCTION. o . 8/1
ITI. OVERVIEW. 8/2
ITI. THE FULL DEVELOPMENT SYSTEM. 8/3
The Editor. 873
The Compiler. 8/4
The Runtime. 8/5
Program Debug. 8/5

v, THE STAND-ALONE RUNTIME SYSTEM. 8/7
STAND-ALONE DEBUG. 8/7
STAND—-ALONE DEBUG COMMANDS. 8/8
BREAKPOINT Command. 8/8
DISPLAY Command. 8/9
DBUMP Command. 8/9
GO Command. 8/9
SYSTEM Command. 8710
V. MEMORY USAGE AND DATA STORAGE. 8711
Ob ject Program Structure.............. 8/11
Storage of Integevs................... 8712
Storage of Decimals. 8/13
Storage of Numeric Arrays............. 8/14
Storage of Strings., .. 8/16
Storage of String Arrays.............. 8/18
Stack Usage. 8/20

VI. ASSEMBLY LANGUAGE SUBPROGRAMS. 8/21
Setup. B/21
Parameter Passing..................... g8/21
Returning to RSBASIC.................. 8/22
VII. THE BASIC FILE SYSTEM AND FILE FORMATS... 8/23
System Supported Files................ 8/23
RSBASIC File Formats.................. 8/26

RSBASIC, RSCOBOL. and ISAM Files...... 8/27

I. INTRODUCTION

This document contains all of the information required +to =
compile, run and debug RSBASIC language programs on the

Radio Shack TRS-80 Model I and Model III Microcomputers

under the TRSDOS Operating System.

It assumes the reader is familiar with the RSBASIC Language,
the general operation of the TRS-80 Model I and Model III
Microcomputers, and the TRSDOS Operating System. The reader
is specifically referred to:

TRS-80 Model I and Model III RSBASIC Language Manuals
TRS-80 Model I and Model III Operation Manuals

TRE5-B0 Model I end Model III Disk Operating System
Reference Manuals

This guide is organized such that each chapter fully
describes a particular operational procedure. While the
experienced user need only refer to the appropriate chapter,
it is recommended that the first—-time user read the complete
guide prior to operation of the REBASIC system.

II. OVERVIEW

REBASIC operates on THE TRS Model I and Model III Micro
computers under the TRSDOS Operating System. It is actually
two separate systems.

The #full development system is used for editing, compiling,
and checking out RSBASIC programs. The system in use must be
equipped with 48K bytes o0f memory to rTun the full
development system.

The Stand—-Alone Runtime system (RUNBASIC) is wused for
execution of previously compiled programs and execution and
checkout of previously compiled programs whose resultant
object programs require more memory than is available wunder
the full development system. RUNBASIC will run on a TRS
Model I or Model III with as little as 3:iK¥bytes of memory.

*¥On & 32K zvstems COMPILER BASIC will conzume most of the
memary. Onlv about 1500 bvite: will be left for the user.

PAGE 8 - 2

III. THE FULL DEVELOPMENT SYSTEM

The Full Development System consists of four modules: the
Resident which always resides in memory., and three overlays:

1) The Editor,
2) The Compiler, and
3) The Runtime.

The Full Development System 1is entered via the RSBASIC
command. The format is as follows:

RSBASIC [filespec] [{T=nnnn,S=xxxx}1]
where:

filespec is an optional RSBASIC source or object file which
is to be run by the RSBASIC system. If filespec is omitted,
the system prompts for input with an asterisk ('#7),

T=nnnn indicates the highest memory address accessible +to
the RS8SBASIC system. The address nnnn 1is in hexadecimal
notation.

S=xxxx indicates the system should reserve hexadecimal X XXX
bytes for stack space. The default is &%CO. This number
should not be less than %20.

To exit the system, the SYSTEM command with no parameters is

used. This will return control to the TRSDOS operating
system.

The Editor

The Editor overlay is loaded by the Resident when editing
functions are required.

The Editor allows manipulation of source programs. It is

ysed to build the source programs which will be compiled and
executed by the other parts of the system.

PAGE 8 - 3

The Compiler

The Compiler is the heart of the REBASIC System. If compiles
the RSBASIC source statements infto an interpretive object
format which will be executed by the RSBASIC Runtime.
Compilation proceeds from +the beginning to the end of the
program with any error information noted along the way.

There are four methods of inveking the Compiler. One is +fo
issue the COMPILE command, specifying an input source +ile
and an output object file. This method compiles the souvce
program into object code one statement at a time and outputs
the objgject code to the specified output file. The COMPILE
command also allows the options of producing a listing of
the source along with a cross—reference and memory—map. This
listing can optionally be routed to the printer or, in a
future release, to a disk file.

COCMPILEIL, Jfilespec, filespec [LLIST, MAP,PRT, XREFZ}]

The second method of invoking the compiler is to issue the
RUN command with no parameters. This allows compilation and
execution of the RSBASIC program currently in memory.

The third method is to issue the RUN command giving the
optional filespec (RUN filespec). If ‘filespec’ specifies a
source program memory is cleared, the source program is
read into memovry, compiled, and executed. The ‘filespec’ may
also specify an object program, in which case the
compilation step is unnecessary

The fourth method of invoking the compiler is Teo issue the
STEP command. I+ necessary, this will compile the RSBASIC
program in memory and allow the wuser to execute the
resultant object code. The line number of the next line to
be executed will be printed on the screen.

Control returns to the command mode following completion of
a compilation, execution, or STEP.

PAGE 8 - 4

The Runtime

The Runtime overlay is loaded to execute the RSBASIC object
code in memory. It processes wuntil one of the following
0CCUTS!

i) a vuser—defined breakpoint 1is reached, in which case a
message is printed on the screen and control returns to
the command mode.

2) when executing a STEP command, the start of the object
code for the next (or the specified number) source 1line
is rveached, in which case a message is printed on the
screen and control returns to the command mode

3) a nonfatal error is detected, in which case an errvror
message is printed on the screen and execution is
continved.

4) a fatal error is detected., in which case an error
message 1is printed on the screen, all open files are
closed, and control returns to the command mode.

9) the program executes a STOP or END statement or executes
the last statement of a program, in which <case a stop
message is printed on the screen, all open files are
closed and control returns to the command mode.

Program Debug

In order to enhance program development, a debug facility is
provided. Debug is initiated in one of three ways:

1) The STEP command,
STEP

2) The BREAK command.
BREAK line number., line number...

3) The TRACE command.
TRACE ON/OFF

The STEP command allows the user to execute his program one
or more lines at a time. After each step, contrel returns to
the command mode to allow the wuser to input new debug
commands. Debug is complete when either the STOP or END
statements have been reached or the GO command iz issued.

PAGE 8 - 5

The BREAK command 1is wused to set breakpoints at various
lines within the program. Erxecution is initiated with the GO
command and proceeds until either a breakpoint is reached or
the STOP or END statements have been executed. Control is
again returned to the command mode.

The TRACE command is used to produce a trace line of sach
line number executed. TRACE may be used in conjunction with
nther debug commands. The format of the TRACE line is

LINE nnnn

where nnnin 1is the line number of the next line to be
executed.

When control has returned to the command mode, the remaining
debug command may be used, the DISPLAY command:

DILSPLAY] [[routine namel; Jvariable, [[routine namel; lvariable. .

where:
routine name describes the routine where the variabls

Tesides. Complete descriptions of all debug commands may be
found in the RSBASIC Language Manual.

PAGE 8 - 6

Iv. THE STAND-ALONE RUNTIME SYSTEM

The Stand—Alone Runtime System is a single module system
which interprets object <code from previously compiled
RSBASIC source programs. It is invoked with the RUNBASIC
command and processes 1in much the same manner as the Full
Development System Runtime. The Stand—Alone Runtime System
debugging facility., however, differs in that only
breakpoints may be set;, there is no STEP facility. At a
breakpoint data items may be displayed to checkpoint program
accuracy.

Format of the RUNBASIC command:
RUNBASIC filespec L[LD, B, T=xxxx, S=nnnk
where:

D causes the system to load and execute with
interactive debug.

T = xxxx reserves memory above hexadecimal address
xxxx for user subroutines. (default is TOP)

B enables the BREAK key for halting execution
(default is disabled)

S = nnnn reserves hexadecimal nnnn bytes for the
runtime stack. (default is &CO)}

The options may appear in any order.

STAND-ALONE DEBUG

The commands to the Stand—Alone Debug module are much the
same as fthe corresponding commands to the Full Development
System. Since the symbol table is not available to the debug
module, locations corresponding to the listing generated by
the compiler are used to denote both line numbers in the
BREAK command and variables in the DISPLAY command.

Real and integer scalars in the common areas are denoted by a
single quote after +the location just as they are on the
Symbolic Memovry Map: 1i.e., Cita’ is location OlA in the
common Aarea. An asterisk before the ilocation is used %o
denote formal parameters to subroutines; i.e., %0347 is used
to display the current contents of the formasl parameter at
lnocation Q347. NMote that & leading O 1is needed on the
location when the leading hexadecimal digit is A through F
to be sure the debug wmodule does not mistake it for &

subprogram name.

PAGE 8 - 7

I¥ the D option is chosen, debug will prompt for a command
under the following circumstances:

1) after the program to be run is loaded into memory. but
before execution begins.

2) after a message is printed on the screen detailing the
filespec specified in a CHAIN statement and where the
statement occurred.

3) after loading the program specified in & CHAIN
statement, but before execution begins.

4) after any fatal error message is printed on the screen.
5) after normal termination of the program.
At any of the above points, any debug command may be
entered, however:, at points 4) and 3), the 60 command and

the 8Y command without & parameter will both cause a return
to the TRSDOS READY mode.

SETAND-ALONE DEBUG COMMANDS

All commands to the debugger are two characters only;
anything else results in a COMMAND SYNTAX ERROR.

BREAKPDINT Command BR <address>, ..

The breakpoint command will cause execution of the RSBASIC
program to be suspended when the instructon at <address> is
reached.

If not qualified, <address> vefers to the “"current"” program
or subprogram; that is, the program in which execution was
suspended by the breakpoint. Before execution begins, the
current program is defined as the main program.

A semicolon before the <addresss forces it to be relative to
the main program, while a subroutine name before the
semicolon forces the <address> o be relative to that
subroutine.

The breakpoint command only (not followed by <address>)
clears all breakpoints previously set

PAGE 8 - 8

DISPLAY Command DI <address>,...

The display command formats the current contents of a
variable according to its type and prints it. The <address>
is that locetion corvesponding to the desired variable on
the Symbolic Memory Map generated by the compiler.

An ungualified <address> defaults to that program in which
execution was suspended. or the main program if execution
has not begun. A semicolon before the {address> forces it to
be relative to the main program, while a subroutine name
before the semicolon forces the Caddress> to be relative to
that subroutine.

Type information is conveyed by the characters "%4" and "$¢
appended to <faddress>. The type defaults to real. An array
element may be displayed by appending the subscripts in
parenthesis to Laddress>. Subscripts must be integer
constants.

For Example:

DI SUB1L; #0304%(1, 1), 0306%
The above command will display the current contents of the
string avray element in the first row and fivrst column of
the two-dimensional string array which was passed as the
formal parameter at location 0304 to subroutine SURBIL,

followed by the integer variable at location 0306 in the
main program.

DUMP_ Command, DU <address 1>[—<address 23]

The dump command is wused to dump memory as hexadecimal
bytes. The qualification of {address 1> is the same as for
the breakpoint command

GO _Command GO

The go command either begins execution or resumes after a
breakpoint is reached.

PAGE 8 - 9

SYSTEM Comman SY L[“TRSDOS Bystem Command']

emssirerere

The system command passes a string to TREDDS as if the
string were entered in response to the TRSDOS READY prompt.
Any parameters to the passed command are ignored. Control
does not return to REBASIC.

PAGE 8 - 10

V. MEMORY USAGE AND DATA STORAGE

Obgject Program Structure

REBASIC programs use two distinct storage areas: PSECT for
storage of instructions., constants, addresses, and dope
{array and string descriptors), and DSECT for storage of all
variable data. The system will allocate both these sections
within its controlled memovry area as follows:

e e e S S o G it o Sonce et fo b ey S e S e Su Ve Somtn Se A e S

H COMMON Storage
H (I+ any}

e e e e e +
! MAIN ROUTINE :
: PSECT Storage H
e o e e e +
H MAIN ROUTINE :
i DSECT Storage :
e e e +
o o o o e o s e e e o o i +
‘ SUBROUTINE N H
H PSECT Storage H
e e e e i e e +
i SUBROUTINE N H
H DEECT Storage !
e e o st o et e e e e e o +

PAGE 8 - 11

Storage of Integersi

Integers are stored in 16-BIT two’s complement Fform. The
least significant byte is stored in the first memory byte
and the most significant in the second. The examples below
illustrate this storage format.

Storage of +5 at hex address 00AL:

00A1L {
oAz i

ot v et e e et e . s vy SRy bengs Sy RS beses oo P Sy

Storage of -5 at hex address 0073

oonon cnns oton Semte e Mande FeIB0 o Banse SN Seeas spenm St SecEe ipdse Sham eeias soam Somte

0073 i1 1101
0074 v 11 11

ke T i

(-S=(COMPLEMENT OF +5)+1)

The numbers which may be thus represented are the integers
in the range

-32768 TO +32767

This, therefore, defines the range of integers in the
RSBASIC system.

#For more information on the storage of integers in two’s
complement form, see "TRS80 Assembly Language Programming"”
by Bill Barden, Jr., Radio Shack Catalog Number 62-2006.

PAGE 8 - 12

Stora

ge of Decimals

Decimals are stored in 8 bytes with the first byte

conta
conta
manti

The ¢
a pos
other
expon

ining the sign and exponent and the remaining 7 bytes
ining 14 binary coded decimal digits representing the
-3 -1

irst bit of the first byte is the sign. A O bit denotes
itive number and 1 bit denotes a negative number. The

7 bits represent a biased binary exponent of ten. The
ent is biased by %40. That is, an exponent of &40 is

equivalent to O.

The mantissa is normalized to the left. This means the first

digit
The e
point

The e

This

The
numbe

of the mantissa is zero only if the number is zero.
xponent is adjusted accordingly. An assumed decimal
is to the left of the mantissa.
xamples below illustrate this storage format.

Storage of 5.6 at hex address OOALl:

S fomin v S S e curte $54ks Saite S Hosas B Sk S St S oo ST Beae Ao 4 S Fote S SOReR SR 90803 St SheR R b e S boten |V SOTES (et Sos G s hetmt SUSY Bhian Seri ety ins bt S St

0oAl 1 41 1 536 10000 L1HOCOLTOOTOO T OO

e Sesas Gamae o v o anate SuPRY S Sow Vet G Somen Saens 4eaes Hooes Fio et s Sores Sy S S i Sorge Serpe Soene Sqnes Boue Hibtn Some e 4o Sov S S Gl e SE o Cn S Jaoen beren Spete i e Sote S

e e Saina Voo St Saond conth edae ot Sk S Aoy Snise S e oo A4t e et o S Mo S4viR Saree Sews Kot o 4ot e SR G Smein Seare Sesen Yo Seete SLfve Seemn Mo Soa Meven ST Shmes Sumn PO So0th Seums o o

is equivalent to
. 2348714 X 10#8(75-64)
or . 2368714 X 10#x%(11)

numbers which may be thus represented are the real
rs in the range

~0. P9999999999999%10~+63 to —0. 99999999995999%10"~L4
and +0. 99999999999999%10~64 to +0. 99999999999999%10~+463

PAGE 8 - 13

Storage of Numeric Arrvays

Arrays of numbers are stored in memory by rvow with each
number occupying two bytes for integer and eight bytes for
decimal. The storage of single and double dimensioned arrays
is illustrated in the two diagrams belouw:

Single dimension integer array AXL with 3 members
starting at hex address 0132:

0132 ——mm—me——-
0133 | A%(O) i
0134 ——me—————e
0135 ! A%(1)
0136 =——m—m—m———
0137 | A%(2) i

B R

Double dimensioned integer array BY% with 3 rows (first
subscript) and 2 columns (second subscript) starting at
hex address 3EB7:

3EB7 ——————m———e
3EBS | B%(0,0) !
3EBY ——mm——me——e
3EBA ! B%(O, 1) !
3EBE ———————————
3EBC ! B%(1,0) !
3EBD ————mm—————
SEBE ¢ B%(1,1) !
3EBF ~—m——mmmm—e
3ECO ! B%(2,0) !
3ECL ——mmmmm—eee
3EC2 ! BU(2, 1)

oo s e v W 0D SeRe3 Guere erom mresn Sws

As can be seen from the examples above, the address of an
element in a single dimensioned array is

ARRAY BASE + S#(SUBSCRIPT)

while the address of an element of a double dimensioned
arrvay element is

ARRAY BASE+S# ((MAX SUBSCRIPT2+1)#8UBSCRIPT1+8UBSCRIPTZ)

PAGE 8 - 14

where 8 is either 2 for integer or 8 for decimal. For

instance.,
AZ(1) above would be:
0132+2#(1)=0134
B%(1,0) above would be:
3EB7+2#((1+1)#1+0)=3EBB

The single dimensioned array can be thought of as a special
case of the double dimensioned array with a MAX SUBSCRIPTZ2
of -1 1f 1its subscript 1is treated as "SUBSCRIPT2". This
implies that in each subscript calculation, two constants
will be requirved —-— the ARRAY BASE and MAX SUBSCRIPTZ2. MAX
SUBSCRIPTL is also needed for subscript checking.

For each array in the RSBASIC system, these three constants
are stored in a memory block referred to as the array dope.
In the example below, the array dope for the two example
arrays is shown.

Array Dope for AL and BY above
Dope begins at hex address 1A75

AZ Dope 1473 1 3 2 | A% Base
1a76 §+ O 1 1
1477 1 0 2 AZ Max Subscriptl
1A78 1§ 0 O ¢
1A79 F F AZ Max Subscript2
ia7a § F F |
iA7B 1 O O | Array type (O=integer, i=real)’
itH7C § C O i not used
B% Dope 1470 + B 7 1 B%Z DBase
14a7E | 3 E @
147F O 2 | B4 Max Subscriptl
1ag0 | O O |
1481 it 01 B4 Max Subscript
1aB2 O O |
i 00 | Type (integer)
i 00 not used

PAGE 8 - 15

Storage of Strings

Strings are stored one ASCII character per byte. The current
length of the string in bytes is stored in a one-byte binary
field at the start of the string. The examples below show
how this works.

"HELLO" stored at hex address Q175

0175 i 05 Current Length
0176 HEER & A
o177 HEAY

~~~~~~~ Current Value
0178 RS T
Q179 L T
0174 HEEA ¥ L

oo o vosns i buse e s

String Variable C%, Max Length=10
Starting at hex address 268A
Current value is "BASIC"

C$ 2468BA i 05 C% Current Length

2688t "B i

268C ?-:;:‘?

268D :“:;:—? C$ Current Value
268E 1 "It

268F 1 "Ct

2620 :——:~—?

2691 ?*’;-~:

2692 :_—:~h: C$ Currently Unused
2693 1 x !

2694 :~-;-”?

PAGE 8 - 16



Strings may be empty, i.e., they may have a current length
of O, or they may have any length up to and including their
declared maximum. For each declared string, a total of MAX
LENGTH+1 bytes is reserved for the storage of the string and
its current length.

During program opevation, the MAX LENGTH of a string
variable will be required to control storing operations into
the string. Thus, for string variables, two constants are
required during program operation —— the STRING ADDRESS as
well as the MAX LENGTH.

For each string variable, these constants are stored in a
memory block called the string dope. In the example below
string dope is shown for the example string C%.

String Dope for C$%$
Dope begins at hex address 2BC1

C$ DOPE 2BC1 i 8A C% Address
2BC2 P26 |
2BC3 T 0A C$ Max Length

PAGE 8 - 17



Storaqe of String Arrays

Strings may also be stored in single or double dimensioned
string arrays in which each element has the same maximum
length but may, of course, have wunique current wvalue - and
length. The example below shows the storage of a single
dimensioned string array A% having three elements each with
a maximum length of 3 characters:

String Array A%, Max Length=3, 3 elements
Starting at hex address 7543

AE(0}="HELLOD", A%{(1)="FROM", A$(2)="RMC"

A$(0) 75A3 HE ¢ - B A%(0O) Current Length
75A4 ©oene
73A5 :‘:;:—: A$(0) Current Valvue
7586 el
7547 P
75A8 :’:8:~:
A$(1) 75A9 :“5&;~: A$(1) Current Length
7584 Lo
75AB :*:;:“: A%(1) Current Value
75AC :—:5:_:
75AD :*:;:*:
75AE :ﬂ-;“: A%(1) Currently Unused
A%(2) T75HAF :*5‘;—: A%(2) Current Length
7580 R
7581 ?‘:;:~: A$(2) Current Value
7582 T
75B3 :*~;*—: A%(2) Currently Unused
75B4 :—_:——?

PAGE 8 - 18



Item order of double dimensioned string arrays is the same
as for double dimensioned numeric arrays.

The address of @ single dimensioned string array element is
calculated as follows:

STRING ARRAY BASE+(MAX LENGTH+1)#(SUBSCRIPT)
e.g., for A%$(1l) above:
75A3+(5+1)#(1)r=75A9

The address of a double dimensioned string array element is
calculated as follows:

STRING ARRAY BASE+(MAX LENGTH+1)%
((MAX SUBSCRIPT2+1)#SUBSCRIPT1+SUBSCRIPT2))

Dope for string arrays is similar fo dope for arrays of
numbers. The first two bytes are the STRING BASE, followed
by two bytes for MAX SUBSCRIPTI, followed by two bytes for
MAX SUBSCRIPT2 (-1 if single dimensioned), followed by a
one—byte array type (02 for string), followed by a one—-byte
MAX LENGTH.

In the example below:, string dope is shown for the example
single dimensioned string array As$.

String Dope for A%
Dope begins at hex address 2BC4

A% Dope 2BC4 A3 A% Address
' : 2BCS {75 i
2BCé& P02 A% Max Subscript 1
2BC7 i 60
2BCg8 i FF A% Max Subscript 2
2BC? {FF |
¢ o2 Array Type
i 05 1 A% Max Length

PAGE 8 - 19



Stack Usage

An RSBASIC program wuses the stack for storing rveturn
addresses and the state of subroutines.

Each GOSUB and function call (DEF function) uses two bytes
Each CaALL to an RSBASBIC external subroutine uses 10 bytes
The system uses about 32 bytes for internal storags.

To calculate the sxpected stack size, estimste the maximum
number of nested gosubs, function calls:, and subroutines
that could occur in & program. The stack size should be
2% (number of nested gosubs and Ffunction calls) + I0#(number
of nested subroutines) + 32.

For example, a program which could nest to a depth of 8O
gosubs would regquire a stack size of % CO bytes.

The system checks for stack overflow and for RETURN’'s
without a matching GUBUB at execution. The size of the stack
is determined by the & option in both RUNBASIC and RERBASIC.
The default is %CO bytes.

PAGE 8 - 20



VI. ASSEMBLY LANGUAGE SUBPROGRAMS

Assembly language _subprograms may be called by RSBASIC
programs. However, the user is responsible for loading them
by use of the TRSDOS LOAD command into memory locations
which do not conflict with the RSBASIC system and for
protecting them from overwrite by the RSBASIC system via the
T (top of memory} parameter on the RSBASIC and RUNBASIC
commands.

Setup

Calling an assembly language subprogram from an RSBASIC
program rvequires the same statement format as a normal
RSBASIC subprogram call. However, since the RSBASIC system
will not know where the user’s assembly language program is
loaded, this information must be supplied wvia the EXT
statement in the formati

In EXT subname = XXXX,...
where:
subname is the subprogram’s name as used in CALL‘s of

the subprogram, and XXXX is the address where it has
been, or will be, loaded.

Parameter Passing

Upon entry to the wuser’s assembly language subprogram
information from the RSBASIC system is passed as follows:

{8P} ——-> the return address#
BC ——-2 the calling routines parameter list (if any).
DE -~~~ a parameter decoding routine for use in retrieving

subroutine parameter addresses and types

#Note: The Runtime requires that information currently on
the stack other than the return address must not be altered
and must remain in its relative position.

PAGE 8 - 21



In ovrder to pick wup any parameter addresses, the Toutine
referenced in DE must be ‘called’. Since this routine has
saved all pertinent parameter information, it requires no
parameters; however, 1t returns the following:

B = argument type, O for integer
i for real
£ for string

DE = argument address (for string scalars, this is the
address of the string dope, for
arrays, this is the address of
the array dope)

A = return code, O for argument returned
-1 for no more arguments

Care must be taken when passing parameters back to the

RSBASIC program to ensure that their formats are correct
(see Storage of Data section).

Returning to REBASIC

At completion of an assembly language subprogram, return is
made to the calling program by passing control to the
address which was pointed to by the stack pointer.

PAGE 8 - 22



VII. THE RSBASIC FILE SYSTEM AND FILE FORMATS

System Supported Files

Three types of files are supported in RSBASIC: sequential,
direct (random}), and indexed sequential (I5AM).

Files are specified 1i1n the wuser’s program in a manner
consistent with the TRSDOS filespec, of the form

filename/ext. password:d(diskette name)
where:
‘filename’ is required.
‘/ext’ is an optional name—extension.

‘. password’ is an optional password. When omitted no
password checking is performed.

‘:d is an optional drive specification. When omitted
the system does an auvtomatic search, starting with drive
G.

‘(diskette name}’ is optional. When omitted no disk name
checking is performed.

Sequential Files

Sequential files are created by Runtime as either wvariable
length or fixed length records, according teo wuser
specification (i.e., if a LENGTH parameter is supplied in
the ODPEN statement, the records will be fixed length;
otherwise, they will be variable length). If the file exists
at OPEN %time:, the file type and record length are wused as
defined by TRSDOS.

Sequential files do not allow DELETE or Update. The maximum
record length for sequential files is 255 bytes.

Direct Files

Direct files are fixed length rtecord (FLR) files. They
differ from standard TRSDOS Direct files in that appended to

the front of each record is a two-byte record length. The
maximum rvecord length for direct files is 254 bytes

PAGE 8 - 23



Indexed Files

Indexed (IS4AM) +files may be rteferenced in either the
sequential or random mode. Each record in an indexed file is
unigquely identified by the value of the associated key. In
RSBASIC, the key need not be part of the data written in the
file. It is vused as a roadmap in order to retrieve the
record on which the data iz =z=tored.

The RSBASIC single—key ISAM structure is built on a TRSDUOE
direct file with 256~byte physical recovrds. Internally. the
ISAM module uses 32-byte logical records called allocatable
units (AU’s).

There are four types of objects in an ISAM file:

1) Header (1 AU)

2) Tree (each node = 16 AU‘s)
3 Linked Lists

4) User data records

The file header starts at AU 1 (the firsts. There 1is only
one tre2 in which all key values are maintained. The header
contains a pointer to the key tree’s root node. The header
also contains pointers to the start of two free lists. These
two lists contain free directory (tree) nodes and free user
records. Directory nodes contain pointers which point to the
associated data record.

When a new object (node or data record) needs %o be created,
an entry on one of the free lists is reused if one exists.
Otherwise, space is allocated at the curreéent end of file.
Variable length data i1z =tored in fised length data records
to allow space to be recovered more easily.

PAGE 8 - 24



The physical format of the header. a node record, and a user
data record are as follows:

Header: header code word
# of AU’s to store header (1)
# of AU’s to store data record (m)
head of free node list
number of free nodes
head of #free record list
number of free records
head of #free duplicate block list (0O)
number of free duplicate blocks (0}
next free AU
flag word
# of keys (1}
key size
key offset (0O}
tree height
root of index tree
next available stamp & (0)

Node: node count word
number of keys in this node
left pointer

e s Sumn cans tactn Somis s daew soe et Sumae westn Lo

{ data pointer
i key value
i vright pointer

it mae Chots S s et i Gaieh Gucto Mmbe sais Smush S0blY

User Data Record: byte count

st woare gocke bentn euers Sl Gt Sumn bk S e beBe

oniee scame coums wages esen Sheom e Gt e smcn Sarn sate

Indexed records are ‘mapped’ onto direct file recovrds of 256
bytes (standard TREDOS sector size}) rvegardless of their
actual size.

PAGE 8 - 25



The formula shown below should approximize the number of 25&
byte sectors that a given file will require on disk. The
actual number of granules is this number divided by 5.
#Sectors = 1 + INT(1 + R# INT((S + 33)/32:/8)

+ INT(1 + 2#R/INT(252/K + B}

where: INT = Integer value
R = Mumber of records in the file
8§ = Size of largest record (in bytes)
K = Bize of key field (in bytes)

Example: 1000 records i file (R = 1000);
max record size is 190 bytes (8§ = 190);
key is & bytes (K = &)

#S5ectors: 1 + INT(L + 1000%INT((1%0 + 33)/32)/8)
+ INT(1 + 2#1i000/INT(232/(6 + 8))

= 1 + 731 + 112 = 84&4

REBASIC File Formats

Within the system file structure RSBBASIC supports three
subfile systems which can be mapped over any of the three
system file formats:

1} Free Format,
2} USING Format, and
3) Binary Format.

Free Format files are constructed ¢to rtesemble an RSBASIC
program input stream with trailing zeros and blanks deleted
and items separated by commas. All items are in ASCII
format, so that an INPUT operation from such a file differs
from console input only in the #fact that input comes from a
diskette file.

USING format files are in ASCII format, but items are not
separated by commas; rather., they are set into a string
structure as dictated by the elements of the USING string
specified when the file was written.

PAGE 8 - 26



Binary Format files, unlike the others. arve constructed in
internal format in the Pollowing method:

i} integers are output as two-byte binary numbers;
2) decimals are output in  their internal format with
trailing zeros truncated and with a leading one-byte

length count;

3) strings are output as & one—~byte count followed by their
ASCII representation minus trailing blanks.

The whole record is then output with & one-byte vecord
length count in front.

RSBASIC, RSCOBOL, and ISAM Files

The format of the RSBASIC indsxed sequential (ISAM) file was
designed to provide a method by which an RSBASIC program and
an RSCOBOL pregram may communicate. By adhering to a feuw
simple vules, the REBASIC programmer may successfully read,
write and update an ISAM file created by RECOBOL. The rules
are simple but quite stringent for both RECUBOL and RSBASIC.
I+ any of them are ignored, the data in the file may be
irretrievably lost.

i} The file must be single—key only
RBBASIC language syntax only permits one key
2} The key must be written as part of the data record

RSBAGIC IS5AM format does not require this, but RSCOBOL
does.

3) The records must be fixed-Fformat ABCII

RGCOBOL. has provision for neither binary data nor
variable length records. The easiest way for an REBASIC
programmer to ensure this is with the PRINT USING and
INPUT USING statements. The Image used is analogous to
the RSCUOBOL record descripior.

I+ the RSBASIC ISAM ¢file is not to be accessed by an RSCOBOL
program, the above rules do not apply and any of the REBAKIC
170 statements may be employed.

Notice that in REBABIC the record is padded on the rvight
with blanks or zeroes:, as appropriate for the record type
(ASCII or binary, respectively).



Radio Shack - Tandy Corporation
Information Bulletin 03/22/84

= cm o 2 i 0 w0m

L Y

Subject: RunBasic for RSBASIC compiled programs,

How to format a 5-1/4 diskette for RunBasic as a stand alone,

€ 5 v o > A 9 A T T e 40 Sl SO S0P 58 T S U VT 5B 2 5 D 14 A T 50 40 D 7 2 O 45 B D D D G B D 6B LD D 9 D T 0D o T 11 15 3 2 100 200 0 2 TR

1, Insert 'Compiler Basic' diskette in drive 0.

2. Insert a blank diskette in drive 1

3. "BACKUP' Source drive 0 to Destination Drive 1
li. Perform following sequence: |

PURGE*:1 (SYS)

Master password? PASSWORD
RUNBASIC/CMD:L (Y/N/Q) ? N
CONVERT/CMD:I (Y/N/Q) 7 N
XFERSYS/CMD:1 (Y/N/0Q) 2 ¥
LPC/CMD:Y (Y/N/Q) 2 N
RUNBASIC/OVL:1 (Y/N/Q) 2 N
BEDIT/CMD:1 (Y/W/Q) 2 ¥
RSBASIC/CHMD:1 (Y/W/QY 2 Y
RSBASIC/LIB:L (Y/w/0) 2 ¥
RSBASIC/LIO:L (Y/N/0Q) 2 Y
RSBASIC/DLF:L (Y/N/Q) 2 ¥
LIST/BAS:1 (Y/N/Q) 2 ¥
SAMPLE/LST:L (Y/N/Q) 7 ¥
SAMPLE/OBI:L (Y/N/QY 2 Y
CIST/LST:1 (Y/u/q) ¢ ¥
LIST/0Bd:1 (Y/N/G) 2 ¥

T R S E) GS é'?; ead‘y ooooooo PEOOOLVPOOVOCVORDANHIVORRIPVOVODIPRROLOVEGROO
5. The procedure is completed. The diskette in drive 1 15 now ready for

Copying compiled RSBASIC nrograms onto it and can be used as a stand alone
diskette in drive 0,






Sequential reading of an ISAM file is possible in RSBASIC by
simply not specifying a KEY on the INPUT or READ statement.
The record input will be the one whose key is next in the
ASCII collating segquence. The wvalue of the KEY last read
will be assigned as the output of the KEY$ function.

PAGE 8 - 28



B



CAT. NOQ.
26-2204

Appendix

CUSTONM MARNUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORR






ERROR MESSAGES AND RETURNS

Resident Evrvor Messages

OVERFLOW

The system hes exhauveted its available memory space.

I+ overflow occurs during an APPEND., then none of the new
lines are appended. During the OLD, lines are included up to
the point where overflow occurred. During RENUMBER, all

lines are renumbered but references ¢to line numbers are
updated only up to the point where overflow occurred.

SYNTAX

Improper command, vedundant information following command,
or improperly formed number or name.

PARAMETERS

Improper parameters have been included in the RSBASIC
initiation command line.

PAGE A - 1



Editor Error Messages

AUTO

Incorrect specification of the AUTO command.

CHANGE

Incorrect parameter specification in the CHANGE command.

DURLICATE

Execution of the DUPLICATE command as specified would
overwrite an existing program line.

FILE FORMAT

An attempt was made to load & file which was not an object
file or was improperly formatted. May occur during a CHAIN
or LOAD.

LINE NUMBER

Line number specification or line number range is incorrect.

RENUMBER

A renumber operation (RENUMBER or APPEND) has been requested
which would generate a2 line number larger than 65535 or the
increment is zero.

SYNTAX

Improper command, rvedundant information feollowing command.
or improperly formed number or name.

PAGE A - 2



ilevr T 8% 8

Compiler errvor messages, when appropriate, will print a ‘%'
character under the item in the line which prompted the
erTor. Errvor messages will be printed under the line in
which the error occurs.

COMMON SIZE

There exists @ discrepancy in the COMMON SIZES between a
main and subprogram.

COUNT

Inconsistant number of arguments in a subprogram or function
call.

DOUBLE DEFINITION

Variable or array has already been declared in a2 SUB or DIM
statement and may not be declared again.

FILE FORMAT

An input file is not in the expected format.

FILE UNAVAILABLE —- TRSDOS ERROR XX

The file specified for input or output cannot be accessed.
XX = TRSDOS error number.

LOGICAL EXPRESSION EXPECTED

An invalid specification of a logical expression has been
detected.

NUMERIC OR STRING EXPRESSION EXPECTED

A logical expression has been detected where a numeric or
string expression was syntactically expected. For example,

10 A=B OR C.

PAGE A - 3



OVERFLOW

Scalar or Array offsets have exceeded &FFFF.

ORDER

SUB must be the first active statement of a subprogram. DEF,
COM, REAL, INTEGER and STRING must precede executable
statements: FOR must precede NEXT:; SUB may be preceded only
by END. Or, FOR loops may be nested but must not overlap.
REFERENCE

Programs may not CALL themselves. String valued functions or
string expressions may not be used as arguments in function
references or subroutine CALLS. Arrays may not appear in
function references, expressions, assignments, or relations
-- only subroutine CALLS.

SIZE

Specification of a size limit, dimensien. or value which
exceeds allowable storage capacity.

SUBPROGRAM

SUBEND may appear only at the end of a subprogram.

SYNTAX

Improperly formed expression or incorrect punctuation.
Redundant information at end of statement. Missing or
misspelled keyword such as TO, THEN, GOSUB, or 6070.
Improperly formed name. Improperly formed string or numeric
constant.

TYPE

Strings and numbers may not be mixed in arithmetic
expressions. The type of a variable does not agree with its
use in the current context.

UNCLOSED FOR LOOPS
LINE NUMBER nnnn WITH INDEX VARIABLE name

PAGE A - 4



UNDEF INED

A referenced function or variable has not been defined.
WARNING: TYPE

An invalid type has been specified in a function call.
Corrective action has been taken.

PAGE A - 5



Ruyntime Ervor messages

Runtime error messages are of the format:

message text ERROR LINE ###d.
There are two types of Runtime errors: fatal and nonfatal.
Fatal errors cause immediate cessation of execution;
nonfatal errors resume processing after a message of the
error has been displayed.

The number in parenthesis is the error number returned by
the ERR function.

Fatal errors are:
(01) END OF FILE

Read attempt at end of $file.

(02) IO PARAMETER

The parameters of an I/0 statement are not recognized.

(03) COMPILATION

The program contains a compilation error.

(04) USING

A PRINTUSING or INPUTUSING statement has attempted to print
or input data wusing an Image which contains no format
specifications.

(05) INPUT SYNTAX

Invalid type of data received on an INPUT statement.
(0&) BUFFER SIZE

Record length for a file is less than zone size for standard
format print.

PAGE A - 6



(07) OUT OF DATA

An attempt was made to READ past the end of the DATA list.

(08) READ DATA TYPE

There is a type discrepancy between the vaeriable data
requested and that of the DATA list.

(09) UNDEFINED REFERENCE

& rveference has been made to an unknown line number or
external routine.

(10) SUBSCRIPT

A subscript is out of range.

(11) ARGUMENTS

The number, type, or value of arguments in an I/0 statement
or subroutine call does not match the corresponding file
record or subroutine parameter list.

(12) RETURN

A RETURN has been executed with no matching GOBUB.

(13) OVERFLOW

The stack memory has been exhausted due to excessive GOSUB
and/or CALL nesting.

(14) INVALID UNIT

An  invalid or undefined uwnit number has specified in an I/0
statement.

(15) UNIT NOT OPEN

An I1/0 statement refevrs to @ unit which has not been opened.

PAGE A - 7



(16) UNIT OPEN

Attempted OPEN of an already open unit.

(17) FILE DCB SPACE EXHAUSTED

an attempt has been made to open more wunits thanm can be
accommodated at one time, due to either system or memory
limitations.

(i8) INVALID FILESPEC

A filespec has been invalidly specified.

(19) KEY LENGTH

A key length less than one or greater than 127 has been
detected.

(22) BINARY READ

Input data does not match the READ list.

(23) BINARY WRITE

Output data does not fit in a record.

(24) DELETED RECORD

Attempted READ of a deleted binary record.

(25) INVALID KEY

The ISAM processor has detected an illegal key value.

(26) KEY BOUNDARY

The ISAM processor has detected an invalid key boundary
within an existing ISAM file.

(27) RECORD POINTER

The ISAM processor has detected an invalid record pointer
within an existing ISAM file.

PAGE A - g



(28) INVALID

The ISAM processor hes detected an invalid index within an
existing ISAM file.

Nonfatel errovrs are:

(30) INPUT SBIZE

A value greater than can be accomodated in the specified
variable has been input. The data item is set to the marximum
value and the specified sign is set to the maximum value and
the specified sign.

(31) OUTPUT SIZE

Numeric value is too long for the Image specification. Field
is Ffilled with #. No message is printed unless the error is
produced by ERROR statement.

(32} NUMERIC OVERFLOW

Overflow during expression evaluation. Sets value to maximum
value with algebraically correct sign and continues.

(33) NUMERIC UNDERFLOW

Underflow during expression evaluation. The value is set to
zero. Occurs only on decimal avithmetic.

(34) DIVISION BY ZERO

The value is set to the maximum for the type.

(35) 50R
Attempt to find the square root of a negative number. The

value returned is the square root of the absolute wvalue of
the input number.

PAGE A - 9



(34) LOG '

the LOG of zero or a negative number. For

Attempt to find
For a

zero the result is set to the maximum negative value.
negative number the result is set to the LOG of the absolute

value.

(37) POWER

number is raised to a nonintegral power or zero
Results are minus the power of
respectively.

A negative
raised to a negative power.
the absolute value and maximum value,

PAGE A - 10



MODEL I/III COMPILER BASIC LIST AND SAMPLE PROGRAMS

TRS-80™
LIST and SAMPLE Programs
The Compiler BASIC package contains two programs -- LIST and
SAMPLE. They are in six disk files:
LIST/BAS SAMPLE/BAS
LIST/OBJ SAMPLE/OBJ
LIST/LST SAMPLE/LST*

LIST/BAS and SAMPLE/BAS are RSBASIC source files. LIST/OBJ and
SAMPLE/OBJ are object files created with the COMPILE command.
LIST/LST and SAMPLE/LST* are listing files created with the LIST,
MAP, XREF, PRT='listing file' options of the COMPILE command.
(The instructions for using COMPILE are in Chapter 2 of this
manual).

*Note: The Model I package does not contain SAMPLE/LST.

LIST Program

The LIST program is for printing any listing files created with
the PRT='listing file' option. To see how LIST works, you can
print the LIST/LST file. Under TRSDOS READY (or DOS READY), type
one of the following:

RUNBASIC LIST/OBJ <ENTER>
RSBASIC LIST/OBJ <ENTER>

e

The Computer give you a FILE? prompt. Type:
LIST/LST <ENTER>

or any other listing file you want printed. The Computer will
then print it on both your screen and line printer.

NOTE: If you will not be using a line printer, you need to change
the LIST program. To do this, first load RSBASIC. Then load the
RSBASIC source file of LIST by typing:

OLD LIST/BAS <ENTER>

Radie fhaek

PAGE A - 11




L I/TIT COMPILER BASIC LIST AND SAMPLE PROGRAMS
e TRS-80®

Change line 140 and save the altered program by typing:

140 PRINT B$S : GOTO 130 <ENTER>
SAVE LIST/BAS <ENTER>

Then make a new object file and listing file of the altered

program by typing:

COMPILE LIST/BAS, LIST/OBJ (LIST,MAP,XREF,PRT=LIST/LST) <ENTER>

SAMPLE

The SAMPLE program simply demonstrates how the Compiler works.
You can run it using RUNBASIC or RSBASIC. Under TRSDOS READY (or
DOS READY), type one of the following:

RUNBASIC SAMPLE/OBJ <ENTER>
RSBASIC SAMPLE/OBJ <ENTER>

The Computer will ask you to input 20 characters. It will print
them on the screen as you input them. Then it will print the
numbers 1 through 100 followed by a series of X's.

Radio fhaek

PAGE A - 12




MODEL I/III COMPILER BASIC
TRS-80™

OPERATORS & SPECIAL SIGNS

COMPILER BASIC

OPERATORS AND SPECIAL SIGNS

For information on these operators and
Chapter 3, "BASIC Concepts".

SPECIAL SIGNS

B Power of 10
& Hexadecimal constant
OPERATORS
Numeric
+ Addition
- Subtraction
* Multiplication
/ Division
* % Exponentiation
! Integer Division
MOD Modulus Arithmetic
String
& Concatenation
Relational
= Equals
>< or <> Not equal to
>= or => Greater than or Equal
<= or =< Less than or Equal
> Greater than
< Less than
Logical
AND Logical AND
OR Logical OR
NOT Logical NOT
XOR Logical XOR
TYPE DECLATATION TAGS
S String
% Integer
# Real

special

signs,

see

Radie fhaek

PAGE A - 13



MODEL I/ITI COMPILER BASIC COMMANDS AND KEYWORDS

W

COMPILER BASIC
COMMANDS, STATEMENTS, AND FUNCTIONS

WORD MEANING PAGE NO
ABS Compute absolute value (Function) 6-12
AND Calculate logical AND (Function) 6-14
APPEND Append two programs (Command) 2-5
ASC Get ASCII code (Function) 6-16
ATN Compute arctangent (Function) 6-18
AUTO Number lines automatically (Command) 2~7
BREAK Set or remove program breakpoints (Command) 2-9
CALL Execute external subroutine (Statement) 6-20
CHAIN Load and execute next program (Statement) 6-24
CHANGE Change program lines {(Command) 2-10
CHRS Get character ASCII or control code (Function) 6-25
CLEAR Clear all programs from memory (Command) 2-12
CLOSE Close disk file (Statement) 6-27
COM Allocate common variable area (Statement) 6-28
COMPILE Compile BASIC program (Command) 2-13
Cos Compute cosine (Function) 6-30
CRT Position cursor (Function) 6-32
CRTG Print in graphics mode (Function) 6-35
CRTIS Read video display (Function) 6-39
CRTR Move cursor (Function) 6-42
CRTX Find cursor position (Function) 6-44
CRTY Find cursor position (Function) 6-44
CVD Convert Integer to Real (Function) 6-46
CVI Convert Real to Integer (Function) 6-48
DATA Store program—-data (Statement) 6-50
DATES Get today's date (Function) 6-52
DEF Define function (Statement) 6-54
DELETE Delete record from disk file (Statement) 6-57
DELETE Erase program lines from memory (Command) 2-17
DIG Compute number of numeric characters (Function) 6-58
DIM Define string variables & arrays (Statement) 6-60
DISPLAY Display variable contents (Command) 2-18
DUPLICATE Duplicate program statements (Command) 2-19
END Terminate program compilation (Statement) 6-65
EOF Notify if end of file (Function) 6-67
ERR Get error code (Function) 6-68
ERROR Simulate error (Statement) 6-69
EXP Compute natural exponential (Function) 6-70
EXP10 Compute base 10 exponential (Function) 6-71
EXT Define address of external program (Statement) 6-72
FOR/NEXT Establish program loop (Statement) 6-73
GO Start or continue program execution (Command) 2-20
®
Radie Sfhaek

PAGE A - 14



MODEL I/III COMPILER BASIC COMMANDS AND KEYWORDS

TRS-80™
GOSUB Go to specified subroutine (Statement) 6-76
GOTO Go to specified line number (Statement) 6-78
HEXS Compute hexadecimal value (Function) 6-79
HVL Convert hexadecimal string (Function) 6-81
IF... Test conditional expression (Statement) 6-83
THEN. ..
ELSE
INKEYS Get keyboard character if available (Function) 6-86
INPUT Input data (Statement) 6-87
INPUT Input data from disk file (Statement) : 6-92
from a
disk file
INPUT Input formatted data (Statement) 6-94
USING
INPUT Input formatted data from a 6-99
USING disk file (Statement)
from a
disk file
INPUTS Input a character string (Function) 6-101
INT Convert to integer value (Function) 6-103
INTEGER Define variables as integers (Statement) 6-104
KILL Delete file from disk (Command) 2-21
KILL Kill disk file (Statement) 6-106
LEN Get length of string (Function) 6-107
LINE Input a line of Data (Statement) 6-108
INPUT
LINE Input line from a disk file (Statement) 6-110
INPUT '
from a
disk file
LIST Display program lines (Command) 2-22
LOAD Load compiled BASIC programs (Command) 2-24
LOG Compute natural logarithm (Function) . 6-112
LOG10 Compute base 10 logarithm (Function) 6-113
LPRINT Print on line printer (Statement) 6-114
LPRINT Print using format on line printer (Statement) 6-116
USING
MERGE Merge disk program with resident 2-25

program (Command)
NEW Erase BASIC program from memory (Command) 2-27
OLD Load BASIC source program (Command) 2-28
ON Enable a <BREAK> handling routine (Statement) 6-118
BREAK
GOTO
ON Set up error-trapping routine (Statement) 6-120
ERROR
GOTO
ON... Test and branch to subroutine (Statement) 6-122
GOSUB
@
Radie Sfhaek

PAGE A - 15



MODEL I/III COMPILER BASIC

TRS-80™

COMMANDS AND KEYWORDS

ON...
GOTO
OPEN

OR

POS
PRINT
PRINT

to a
disk file
PRINT
USING
PRINT
USING

to a
disk file
RANDOMIZE
READ
READ
from a
disk file
REAL

REM
RENUMBER
RESET
BREAK
RESET
ERROR
RESET
GOSUB
RESTORE
RESUME
RETURN
RND

RUN

SAVE
SEGS

SGN

SIN

SIZE

SQOR

STEP
STOP
STRS
STRING
STRINGS
SUB
SUBEND
SWAP
SYSTEM

Test and branch to different program
line (Statement)

Open disk file (Statement)

Calculate logical OR (Function)

Search for specified string (Function)
Print on video display (Statement)
Print to disk (Statement)

Print using format (Statement)

Print using format to disk file (Statement)

Reseed random number generator (Statement)
Get value from DATA Statement (Statement)
Read contents of disk file (Statement)

Define variables as real numbers (Statement)
Comment line (remarks) (Statement)
Renumber program (Command)
Disable the <BREAK> handling
routine (Statement)
Disable error handling (Statement)

Clear all returns (Statement)

Reset data pointer (Statement)

Terminate error trapping routine (Statement)
Return control to calling program (Statement)
Generate pseudorandom number (Function)
Execute program (Command)

Save BASIC source program on disk (Command)
Get substring (Function)

Get sign (Function)

Compute sine (Function)

Print used and unused memory (Command)
Compute square root (Function)

Execute portion of program (Command)

Stop program execution (Statement)

Convert to string representation (Function)
Define variables as strings (Statement)
Return string of characters (Function)

Name and define subprogram (Statement)

End subprogram (Statement)

Exchange values of variables (Statement)
Return to TRSDOS (Command)

Radio fhaek

6-123

6-125
6-127
6-129
6-131
6-135

6-137

6-142

6-144
6-146
6-148

6-150
6-152

2-29
6-153

6-154
6-156

6-158
6-160
6-162
6-163

2-30

2-31
6-165
6-166
6-168

2-33
6-170

2-34
6-172
6-173
6-176
6-178
6-179
6-181
6-182

2-35

PAGE A - 16



MODEL I/III COMPILER BASIC

TRS-80™

SYSTEM
TAB

TAN
TIMES
TRACE ON,
TRACE OFF
VAL
WRITE

to a
disk file
XOR

COMMANDS AND KEYWORDS

Return to TRSDOS (Statement)
Tab to position (Function)
Compute tangent (Function)
Get the time (Function)

Turn tracer on, off (Command)

Evaluate string (Function)
Write to disk (Statement)

Calculate exclusive OR (Function)

Radie Sfhaek

6-184
6-185
6-186
6-188

2-36

6-190
6-192

6-194

PAGE A - 17



MODEL I/III COMPILER BASIC INDEX
TRS-80™
ABS ..... ceeecececcaaeananns 6-12 Data
AdAition .oeevneervncennnn.. 3-24 Conversion ............ oo 3-20
AND Operations ....cccoccecoaces 3~22
Operator .....eveeceenne.. 3-31 Representing ..ccccocececoe 3-6
Function ......cevoeeecec.. 6-14 Storage ...cecoceccccoacos 3-10
APPEND .......... Ceeeeeeann. 25 Ways of Handling ......... 3-6
ASC v...nn... e e 6-16  Data Files
Assembly Language Explanation .....ccceocce. 4-1
Subprograms oo e oo s e 5-7, 8-21 Structure .cccceococooocosone 8-11
N 6-18 DATES ..vcoecvcccoecenccnns 6-52
AUTO vvvvvvvnennnnnnnn.. L. 2-7 DEDUG .vvvvveeccooooonnn 8-5, 8-7
BASIC Decimal Storage ...... ceooes 8=13
Concepts ..overeveoonconsn. 3-1 DEF ..ccccecooas cecsscssseos 0=54
KeyWOords ....eeeeeweoenen.. 6-1 DELETE
Also see RSBASIC FUunction ..ccceceoccocecs .. 2-17
BEDIT ¢ovoccoceocooonconsenss 7-1 Statement ......cc.0c000 oo 6-57
Binary Input/Output Demonstration Program ..... . A-11
OVEIVIEeW .o0e0ee... teeee.. 4-13 DIG cccocoos cecesconsn oo 6-58
In Sequential Access File 4-24 DIM cccccoovcocsns ceosoo 3-16, 6-60
In Direct Access File .... 4-34 Direct Access
In Indexed Access File ... 4-36 OVerview ..cccoocooccccccss 4-6
BREAK o vvvvnnnnonennnonennns 2-9 Building the File ........ 4-26
BREAKPOINT ..viveveovooonnn. 8-8 Using Binary Input/Output 4-34
CALL ...... e Ceeeeeen .. 6-20 Using Formatted I/O ...... 4-26
CHAIN ...evvevcoonnn. Ceeeeen 6-24 Using Stream Input/Output 4-32
Chaining Programs ....... ce. 5-13 Diskettes
CHANGE . ivvvenvocoonnnnnnnns 2-10 File Specification ....... 1-10
CHRS ...ov... C e eeeoeeees ce.. 6=-25 Inserting (photo) ........ 1-2
CLOSE tvvveeenecoocnoannns . 6-27 Loading Programs ......... 1-13
COM ....... Ceeeaeean ceceeans 6-28 Storing a Program ........ 1-11
Concatenation .......eeceo. oe 3-27 Using Diskettes ....... . 1-9
COS toveucnnn ceeeeccnns ceeo. 6-30 Write Protect Notch ...... 1-9
CLEAR ..cevvvcnn. cececesoes. 2-12 DISPLAY ..cceococosno .. 2-18, 8-9
COMPILE cooceccocns cosecnse . 2-13 Division ..cecccoccocsccscocs 3—25
Constants DUMP ..ccocvcos cesosee cecees 8-9
Definition ..... teccossoes 3-6 DUPLICATE ...... cocscccssccs 2—19
Classifying ....ceeeeeoons 3-12 EJitOr .ccooccvocsccccss . 7-1, 8-3
Compiler ..cceeececcncccons . 8-4 END ..coccvoos ccccoccescocces 0=65
Compiling a Program ........ 1-12 EOF ..c000 cococccsccscescacs 0=67
Commands ..... ccocooccs o 2-1; A-13 ERR ccececoccos ecoococccanasas 6-68
CRT +ccccococcccocns cecocecese 0—32 ERROR ..ccccecocooconcccsccocca 0—69
CRTG .ccoecoccocses ccocco e s e s 6-35 Error Messages ..ccecocee ceeo A-1
CRTIS ....... cecseens ceeees. 6-39 EXP ticvcoococos cecessesesas 6-70
CRTR ..... cecesacnanes ceooes 6-42 EXP10 ..cceecocs ceeosssscces 6-=71
CRTX ..ccecccccoacns cececcse.. 6-44 EXT cececececccecnccoacacancs 6-72
CRTY ©evvreenenencnnenns ce.. 6-44 Exponents ............ ceee.. 3-13
CUD tvvvvennnnnnnn cereneee.. 6-46 Exponentiation ............. 3-26
CVI t.ovennnn. ceeoen ceeeen .. 6-48 Expressions
DATA ......cecurvnenenceaee. 6=50 Definition ............... 3-4
SYyntax .cceccecocccssasssss 3—35

Radie Shaek

PAGE A - 18



MODEL I/III COMPILER BASIC

INDEX
TRS-80™
Fielding Records ....cceooeo 4-10 LIST cccocccooccacosoccocoss 2-22
File Specifications ........ 1-10 LOAD ..ecvooccons cesesoosn . 2~24
Fixed Length Records ....... 4-3 LOG covocsccooncscncsococcse 6-112
FOR/NEXT ¢ ¢vveeceocceses cesec. 6-73 LOG10 ....ccce cecesssccocss 6-113
Formatted Input/Output Logical Operators ..cceeeoos 3-30
overview ...... ceccocececen 4-12 Logical TestsS .c.ceewn oo oo 3-5
In a Direct Acces Flle .. 4-26 LPRINT ..... cococcescccsceass 0=114
In an Indexed Access File 4-36 LPRINT USING ..coococoscosse .. 6-116
In Sequential Access File 4-22 Memory USAge ..cceeeccoococcss 8-11
Full Development System .... 8-3 MERGE . :ccccccccccoccsoconnosso 2-25
Functions Modulus Arithmetic ......... 3-26
Definition ....ccc000 3-4, 3-34 Multiplication ....cceccceeo . 3-25
List .c.cceeonans cesccceane A-13 NEW ©.ccecocccoossosscoonsoss 2-27
Summary ...... ceescee e ce. 6-8 NOT .ccecceooccecosonccncnocos 3-31
SYNtax ..ceeeeccccsscoccs eo 3-37 Numeric
GO .eeoocae ceocoscecasa .. 2-20, 8-9 Arrays Storage ......ccc.. 8-14
GOSUB ccocccoocso esocs e ceee. 6-76 Data ...ccevoononscoccoscoce 3-10
GOTO ocoooooee coe o000 s o0 seoeso 0=78 RelationsS . .eceeoocoocosseos 3-29
HEXS cccoococoooccocoococss e e oo e 6-79 OLD . :.coeoccoccosoococsoscsonoe 2-28
Hexadecimal Numbers ...cco»- 3-12 ON BREAK GOTO ,,,,,,,,, .... 6-118
HVL ..ccccoccooccoososssoasss 6-81 ON ERROR GOTO .o veuvn.. ... 6-120
IF,..THEN...ELSE ..cccoococo 6-83 ON...GOSUB .. evvoseon. ... 6-122
Indexed Access ON...GOTO ..cceceecoacooos eoo 6-123
OVEYVIeW .ooveeooses cosess 4-7 OPEN ..c.vevono ceeececenenn 6-125
Building the File ..... co. 4-36 Operands .....eoeeeeses ceee. 3-22
Using Binary Input/Output 4-36 Operators ....... C e 3-22
Using Formatted I/O ...... 4-36 LiSt veveveeeocoooonnns ... A-12
Using Stream Input/Output 4-36 Logical ..veveeoenens ceee. 3-30
INKEYS ¢ccecocococccas e oo esan 6-86 NUMETYIC oo ovooooooss v ee.. 3-23
INPUT ..cc.. ceococsececco s e . 6-87 Relational .....ce.. V... 3-28
INPUT from disk file 4-11, 6-92 String ...eeeeeee.n ceeeoas 3-27
INPUT USING c:cccovooooosacss 6-94 Test ..ccevocsoccoccccccscs eoo 3—28
INPUT USING from disk file 4-12, OR
6-99 Function ..... ceseceae ees 6-127
INPUTS oo ecococcocosoonocscsans 6-101 Operator c.coceccccccccas . 3-31
INT .ceocen ceeeangseess ceess 6-103 Parameter Passing ...cccoee. 8-21
INTEGER ........:ﬁrtj...... 6-104 Parentheses .......cc000000. 3-32
Integer Division ....ccceene 3-26 o 6-129
Integers Precision .....ccceccccccccs 3-10
conversion ......... 3=-20, 3-21 PRINT ..ccecccocacncosooscs 6-131
Definition ...cceeeecooass 3-10 PRINT to a disk file 4-11, 6-135
StOrage .cescseccccs ccoeoee 8-12 PRINT USING ...co.. cesessos 6—137
Keywords ........ ceerncanaas 6-1 Program Definition ..c.cceeco 3-3
KILL Programmers' Information .... 8-1
Command ...eoecees ceeeeens 2-21 RANDOMIZE ..ooeeococoos ce.. 6-144
Statement ..... ceeces oo 6-106 REBD ©evveeeocoooncncacanas 6-146
LEN o0 oo esessossecesees 6-107 READ from disk file . 4-13; 6-148
LINE INPUT ..cccocooecs ees.. 6-108 REAL &+ v oo s vsoescenoss 3-16; 6-150
LINE INPUT from a disk file 6-110
®
Radie fhaek

PAGE A - 19



MODEL I/III COMPILER BASIC

INDEX
TRS-80™
Real Numbers Statements
Conversion ..... «.. 3-20; 3-21 Definition ........ teeeees 3-3
Defintion .....ceveceee .. 3-10 LISt eveecocoosaconss wee.. A-13
Records SUMMAYY cooocenssoos teoes. 6-4
Definition ..... ceeeseenes 42 STEP v eveoeooennasosossessss 2-34
Fielding ....... cesesoss. 4-10 STOP «eeoecoocons N 6-172
Input/Output Methods ... 4-10 STRS «ovvos G eeeeeaeees te... 6-176
TYPES ceeccss cseeeee e 4-3 Stream Input/Output
Fixed Length ........ .. 4-3 OVEYVIeW c.occocccaasnss .. 4-11
Variable Length ....... 4-3 In Sequential Access File 4-15
Ways of Access In Direct Acces File ... 4-32
Direct ...cccce cesenes 4-6 In Indexed Access File 4-36
Indexed ..... ceesneene. 477 STRING «ocoecons e.... 3-14; 6-176
Sequential ...c..0. eee. 4-5 String
Relational operators ....... 3-28 Array Storage ......-. ce.. 8-18
Relational tests ...ccoeoeese 3-5 Concatenation ..... ceeess 3-27
REM «vovonn e . 6-152 DAL +oererreeeeennnnnaas 3-11
RENUMBER .« ¢eoevcooooes Ceeeene 2-29 RELALLONS «vevooeeeennose 3-29
RESET BREAK .cccceooo coooe e 6-153 StOrage ..cecsesescs 3-14; 8-16
RESET ERROR ...cccecocccscs 6-154 STRINGS ccoceococoscs tesesecss 6-178
RESET GOSUB ......cc.- cec.. 6-156 SUB eeveececnccoconss ceeeees 6-179
RESTORE ....covevencccss ... 6-158 SUBEND . oo ceeaccoes te... 6-181
RESUME ..:¢ccccecooo0c0ccoss 6-160 Subprograms
RETURN ..cceoo s o000 e PRSPPI 6-162 Call]_ng Assembly
RND .cccoooonoan ceosecsensen 6-163 Language Programs 5-7; 8-21
RSBASIC How to Build .......- ceeee D-2
Loading ..cececcecccnone .. 1-4 Passing Data ..... Ceeeenen 5-5
Programming «...cceceeeeccs 1-6 Storing .ececececcccss B
Debugging ....oceocecesces 1-8 SUbLraction «.ecececccess ... 3-24
See also, BASIC SWAP ....oeo ceesessacaso e . 6-182
RUN ..cococcvss ceeecesscasss 2-30 SYNLAK cvecvoonnnanosces 2-2;: 6-2
Runtime ..cocce0 veeceees 8-5; 8-7 SYSTEM
SAVE ...cc.o oo ceesssssss 2-31 Command «.oeeeee ... 2-35; 8-10
Saving a program ...... ceen. 1-11 Statement ...... ceeeeees 6-184
SEGS «..coce- RERIEEEE cees. 6-165 TAB o veeennecocccnnnsnnes .. 6-185
Segmenting Programs ........ 5-1 TAN «eoecoons Ceteeaceseaene 6-186
Sequential access Test Operators ........ cee.. 3-28
OVEerView ..ccseesccsscs cee. 4-5 Test Relations ......eeecceee 373
Building the file ...... . 4-15 TIMES <vvceeeeeseaccncsssss 0-188
Using Binary I/0 ........ 4-24 TRACE ON +vvceecocenonnnnons 2-36
Using Formatted I/O ..... 4-22 TRACE OFF +evvecccoonns cee.. 2-36
Using Stream I/O ........ 4-15 Type Declaration Tag ..A-13; 3-17
SGN tocoveccnonns ceeennne ... 6-166 VAL v voevcennoooonsnanassncs 6-190
SIN ..coooococs coeseon s .... 6-168 variable Length Records ..... 4-3
SIZE ..cc- cecoeos teeeeeseees 2=33 variables
Special Signs ...... ceeseoes A-12 Definition .......... 3-7; 3-8
SOR ..ecvoccssoss cesoee ee.. 6-170 Classification ...cccoeee 3-14
Stack USAge .eseeecscoscos ... 8-20 WRITE to Disk File .. 4-13; 6-192

Radio fhaek

Protect Notch ....0c.- 1-9
C e eee.. 3-31; 6-194

Write
XOR ccoovescocs

PAGE A - 20









	workingset1.pdf
	_0606074207_001.pdf
	_0606074209_001.pdf
	_0606074212_001.pdf
	_0606074217_001.pdf
	_0606074223_001.pdf
	_0606074227_001.pdf
	_0606074250_001.pdf
	_0606074259_001.pdf
	working.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf

	set2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf


	workingset1b.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf

	workingset2.pdf
	_0606074207_001.pdf
	_0606074209_001.pdf
	_0606074212_001.pdf
	_0606074217_001.pdf
	_0606074223_001.pdf
	_0606074227_001.pdf
	_0606074250_001.pdf
	_0606074259_001.pdf
	working.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf

	set2.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf


	workingset2b.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf

	workingset2c.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf

	workingset2d.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf




